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SPACE-LIKE SURFACES WITH
1-TYPE GENERALIZED GAUSS MAP

SooN MEEN CHol, U-HANG K1 AND YOUNG JIN SUH

ABSTRACT. Chen and Piccinni [7] have classified all compact sur-
faces in a Fuclidean space R21P with 1-type generalized Gauss
map. Being motivated by this result, the purpose of this paper
is to consider the Lorentz version of the classification theorem and
to obtain a complete classification of space-like surfaces in indefinite
Euclidean space R?,'H’ with 1-type generalized Gauss map.

1. Introduction

As is well known, the theory of Gauss maps is always one of interest-
ing topics in Riemannian geometry and it has been investigated from
the various viewpoints by many geometers. The generalized Gauss
maps are also taken up by Obata [14], Ruh and Vilms [17] and so on.
In particular, for the Euclidean space a Gauss map is defined as follows.

Let M be a real hypersurface in an (m + 1)-dimensional Euclidean
space R™*! and ¢ a unit vector field normal to M. Then, for any
point z in M, we can regard £(z) as a point in an m-dimensional unit
sphere S™(1) by translating parallelly to the origin in the ambient
space R™*1. The map £ of M into S™(1) is called the Gauss map of
M in R™*1,

On the other hand, let G(m, p) be a Grassmann manifold consisting
of all oriented m-planes through the origin of R™*?P. For an isometric
immersion £ of an m-dimensional oriented Riemannian manifold M
into an n-dimensional Euclidean space R", n = m + p, a generalized
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Gauss map is by definition a map G that assigns each point z in M to
the m-plane through the origin in R™*? obtained by translating paral-
lelly the tangent space at z of M in R™*?. Ruh and Vilms [17] gave a
condition for the generalized Gauss map G of the compact Riemannian
submanifold to be harmonic. The Grassmann manifold G(m, p) is also
isometrically immersed in RV, N = (™1?). The extension Gp of the
generalized Gauss map G to RY is also called by the same one. It is
said to be of 1-type if it satisfies

AGp = MGy

for a constant A. With this relation of 1-type generalized Gauss map Gp
Chen and Piccinni (7], [8] classified the compact surfaces in a Euclidean
space R?1? in such a way that

THEOREM A. Let M be a compact surface in R2tP. Then the
generalized Gauss map Gy : M—RN, N = (p+ 1)(p+ 2)/2, is of 1-
type if and only if M is one of the following surfaces:

(1) the sphere S2CR3CR?**?,

(2) the product of two plane circles S! xS!CRACR2+P.

On the other hand, the Gauss map on a space-like submanifold in
an indefinite Euclidean space is also researched by Aiyama [2], [3] and
Palmer [16]. Recently the first author [12] has proved rigidity theorems
for ruled surfaces along any non-null curve in R$ by the Gauss map.
Moreover, the present authors [13] have characterized a class of non-
degenerate ruled surfaces along the null curve in R3, which are said to
be of null scrolls, by the Gauss map.

Being motivated by Chen and Piccinni’s study [7], [8] and these
results, the purpose of this paper is to give the indefinite version of
Theorem A as follows:

THEOREM. Let M be a space-like surface in R,z,“’. Then the only
surfaces with 1-type generalized Gauss map Gp : M—RY N = (p +
1)(p + 2)/2 are locally the following spaces:

(1) the Euclidean space R2, the hyperbolic space H? and the hy-
perbolic cylinder H' xR in R},

(2) the product H' xH! of two hyperbolic curves in R%CR?,“’.
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2. Preliminaries

In this section we shall recall the theory of semi-Riemannian sub-
manifolds in a semi-Riemannian manifold. Throughout this paper, we
assume that all geometric objects are smooth and all manifolds are con-
nected and without boundary, unless otherwise stated. Let (M’,g’)
be an n-dimensional semi-Riemannian manifold of index q. For the
semi-Riemannian manifold M’ we can choose a local field {E 4} of or-
thonormal frames adapted to the semi-Riemannian metric ¢’ on M’.
With respect to the frame field F 4, there exist 1-forms w4 and wyp
on M, which are usually called canonical forms and connection forms
on M’ respectively.

An n-dimensional semi-Riemannian manifold is called a semi-space
form of constant curvature ¢ and with index q if M’ is of constant
curvature ¢ and of index g. We denote by Mg(c) an n-dimensional
semi-space form of constant curvature ¢ and with index gq.

Now we give here standard models of complete semi-space forms.
For an n-dimensional Euclidean space R™ with standard coordinate
system {z 4} a semi- Euclidean space R} of index q is a semi-Riemannian
manifold whose line element is given by ds? = -37_ (dwz;)?
+3 5 4+1(dz;)?. For ¢ = 0 the semi-Eucliedan space Rf is Euclidean.
For n>2, RY is called an n-dimensional Minkowski space. The metric
tensor g’ of R} can be written as

g = ZAGAde®d$Aa

where €4 = —1 for 1<A<g and €4 =1 for ¢+ 1<A<n.

For any n(>3) and g (0<¢<n) a pseudosphere S{;‘l(c) of constant
curvature ¢ > 0 is the hypersurface in an n-dimensional semi-Euclidean
space Ry defined by

S;‘—l(c) = {(wA)ERgl—Z:zl(xi)2+zzzq+l(zj)2 — % = 7‘2,7' > 0}



318 Soon Meen Choi, U-Hang Ki and Young Jin Suh

In particular, ST7!(c) is called a de Sitter space of constant curvature
c.

A pseudohyperbolic space H;‘__ll(c) of constant curvature ¢ < 0 is
the hypersurface in an n-diemnsional semi-Euclidean space Ry defined
by

;0 = {(eA)eRy - (@)Y

()2 =-=—-r’r> 0}.

In particular, H} !(c) is called an anti-de Sitter space of constant
curvature c.

Now let M’ = M7**?(c) be an (m + p)-dimensional semi-space form
of constant curvature ¢ and of index r. The canonical forms {w4} and
the connection forms {w4p} restricted to M are also denoted by the
same symbols. We then have

(2.1) we=0 for a=m+1,--m+p

and the induced semi-Riemannian metric g of M is given by g =
>_;€;wj®w;. Here and in the sequel the following convention on the
range of indices is used, unless otherwise stated:

ISZ,J,Sm, m"f‘lSan@,Sm‘*‘Pa 1SA,B,Sm+P

Thus {E;} is a local field of orthonormal frames with respect to this
metric and {w;} is a local dual frame field due to {E;}. They are
canonical forms on M. It follows from (2.1) and the Cartan lemma
that the exterior derivative of (2.1) gives rise to

(2.2) Wai =) eshGws,  hG = hg.
The second fumdamental form o on M is defined by
a= Za,i’jeaeiejhf‘jwi(@wj@Ea.

The mean curvature vector field h of M is defined by

1
h= ——Za’jeaejh;?‘an
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and the mean curvature H is defined by H = |h|, if the codimension is
equal to or greater than 2. So it satisfies

(2.3) H?=|<hh>|= le ea(z €:h)?

From the structure equations of the ambient space the connection
forms {w;;} of M are characterized by the structural equations:

dw; + Zkekw,-k/\wk =0, Wwij + Wi = 0,
(2.4) dwi; + 3 perwikAwg; = iy,
Q5 = —%Ek,lfkel}?fijklwk/\wl,

where w = (w;;) (resp. R;jri) denotes the curvature form (resp. the
components of the Riemannian curvature tensor R) of M. For the
Riemannian curvature tensor R of M it follows from (2.2) and (2.4)
that we have the Gauss equation

(2.5) Rijii = cei€j(6udjx — 0ixdj1) + ZaGa(hﬁ 5k — hikhik),

Moreover we also have the following relationships:

(2.6) dwap + qu.,wa,,/\ww = Qapg,
1
Qop = ~3 kakelRaBklwk/\Wl,

where Qg (resp. Ragri) is called the normal curvature form (resp.
the components of the normal curvature tensor B') of M. By means
of (2.2) and (2.6) we have

(2.7) Ropgri = Zjﬁj(h?th?k - h?kh?l)'

Let V, V’/ and V< be the Levi-Civita connections on the semi-
Riemannian submanifold M, R;““’ and the normal connection of the

normal bundle T+ M on M, respectively. Then we get
Vin = Zjéj(dji(X)Ej, IXEi = ZAEAwAi(X)EA,
V%E, = Zﬁegwﬁa(X)Eﬁ
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for any vector field X tangent to M.

Now, the components hy;, of the covariant derivative Vo of the
second fundamental form o of M are given by

Zkﬁkh%kwk = dh% — Zkek(h‘gjwki + h?kwkj) - Zﬁeﬁhiﬁjwﬁa

and the components hfj,; of the covariant derivative V2a of Va are
given by

Zlelhf‘jklwl = dh%.k'—Zlel(h%kwli‘l‘hﬁkw[j+h?jlwlk)—zﬁ€ﬁhfjkWﬂa

The Codazzi equation and the Ricci formula for the second fundamen-
tal form are given by

(2.8) ik~ Pik; =0,
he e — i = — Znen(hﬁij’kz + hinRnjkt)
— ZﬁfﬂhZRﬁakl-

On a semi-Riemannian manifold there are natural generalizations
of the well known differential operators of vector calculus on R3: gra-
dient, divergence and Laplacian. Let M be an m-dimensional semi-
Riemannian manifold with local coordinate system {x;}. For the com-
ponents g;; of the semi-Riemannian metric g on M we denote by (g*/)
the inverse matrix of the matrix (gij). Then the direct calculation gives
us to the local representation of the Laplacian of a function f on M as
follows;

1 0 i 0
(2.9) Af = _mzi’j%( |9|g J%;
= &{EEif - (V5E)f},

where g denotes the determinant of the matrix (g;;). In particular, f
is said to be of 1-type if it satisfies the above formula Af = Af for a
constant A. For the submanifold of finite type we refer to Chen [5] and
his survey [6)].
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Now, let M be an m-dimensional semi-Riemannian submanifold of
an (m + p)- dimensional semi-space form M}**?(c) of index g. Then
the Laplacian Ahf; of the components hf; of the second fundamental
form a is given by

Ah = echfix

From (2.8) we get

(2.10)
AR

=Zk€k{hgkij - ann(hannijk + hqiRukjk)
-3 ﬂfﬁhfiRﬁajk}

For an endomorphism F' on the tangent bundle TM of M we denote
by TrF the trace of F. That is, it is defined by

TrF = }:’file,-g(FE,-, E;).

Let H* be an mxm symmetric matrix (h$;) for any index a. We put
Sop = Tr(H*HP) and Sy = Saq. Then (Sap) is also an mxm sym-
metric matrix. In general, for a matrix A we define N(A) = Tr(AtA).
By using the Gauss and Codazzi equations, (2.7), (2.10) and using
these terminology, we get the following Simons type formula:

(2.11)

1
§A <a,0>=<Va,Va>+tme< a,a >
_ arrB _ gBrgoy _ 2
ZaﬁeaegN(H HP — HPH®) Zasa
+ ZaﬁeaegTrH“Tr(HﬁHaHﬁ),
where < a,a > denotes an inner product of the second fundamental

form a given by >_, . , €i€; eah;’jz. This is obtained by Cheng and the
first author (See [9] and [10]).
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3. 1-type generalized Gauss map

This section is devoted to investigating the generalized Gauss map of
space-like submanifold in an indefinite Eucliden space, which is closely
related to the Gauss map of space-like hypersurfaces in a Minkowski
space.

Let R;,"‘*‘p be an (m+ p)-dimensional indefinite Eucliden space with
standard coordinate system {z4} whose line element is given by
ds® = Y7 (dz;)? — S dP _ (dzo)?. Let G(m,p) be the set of all m-
dimensional positive definite subspace V' through the origin in Rg"'"’.

First we introduce the Riemannian manifold structure to G(m, p).
The semi-orthogonal group O(m,p) consisting of all isometries Rg‘“

—»R;""'l is given by

O(m,p) = {(aaB)€GL(m +p,R) : Y _ecaacacn = cadan}

and its connected components O (m,p) is the subgroup of O(m,p)
whose elements preserve space-like and time-like orientations:

O**(m,p) = {(aaB)€O(m,p) : det(as;) > 0,det(aqs) > 0}.

The group O(m,p)(respectively O+ (m,p)) acts transtively on
G(m,p). If V, is a subspace of R;’,“"p spanned by the first m vec-
tors in the canonical basis, then Vo€G(m, p) and the isotropy group of
Vo is O(m) xO(p) (resp. SO(m)xSO(p)) since both V; and the perpen-
dicular subspace Vg" are definite. Then we get the manifold structure
on G(m,p) as a quotient space:

G(m,p) = O(m,p)/O(m)xO(p) = O*F(m,p)/SO(m)xSO(p).
The manifold G(m, p) is called a Grassmann manifold. For the Grass-
mann manifold the following property is known by O’Neill [15]:

THEOREM 3.1. The Grassmann manifold G(m,p) consisting of all
space-like subspaces in Rg“‘“p is a Riemannian symmetric space of the
non-compact type.

In fact, G(m,p) is a Hadamard manifold, that is, it is a complete,
simply connected Riemannian manifold of non-positive curvature. In
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particular, in the case where p = 1,G(m,1) is an m-dimensional hy-
perbolic space as the set of time-like lines through the origin in R;'H'l.
Now, let V' be an m-dimensional oriented space-like subspaces in R;,’”‘P .
We denote by e, ..., e, an orthonomal basis for V. Then e1A---Aep,
is a m-vector with norm 1 and gives the orientation on V.

Conversely, for any m-vector of norm 1, it determnes a unique
m-dimensional oriented space-like subspace in R;,”*'p. Consequently,
an element in G(m,p) can be identified naturally with the m-vectors
of norm 1 in the N-dimensional Euclidean space A"R™?P = RV,
N = (mw;';”). Let S¥—1 be the unit sphere in RV centered at origin.
Then G(m, p) is an mp-dimensional submanifold which is isometrically
immersed in SY-1cRY.

Letz: M —+R;,"+p be an isometric immersion of an m-dimensional
Riemannian manifold into R7**?. For each vector u tangent to M,
we identify u with its image under the differential dx of the isometric
immersion z. Then the generalized Gauss map G of M is by definition a
map which assigns each point z in M to the space-like m-plane through
the origin in RZ“"” obtained by translating parallelly the tangent space
at z of M in R7**P. Hence we see that

G: M——»G(m,p)CSN_lcR;,V.

Let F4,-- -, E,, be a local field of orthonormal frames on M. So the
Gauss map G is given by G(2) = (E1A---AER)(2).

Firstly, we obtain the following fundamental formula for the gener-
alized Gauss map on M:

LEMMA 3.2. Let x : M—R}*? be an isometric immersion of an
oriented m-dimensional Riemannian manifold M into R;,”*p . Then
the Laplacian of the generalized Gauss map G : M —>G(m,p)CR£’ ,
N = (™!P) is given by
(3.1)

j—th
AG =Y EiN--Ab;EaA - -AEnm,

@, g

+ Za<ﬂzj,kR°"@jkElA' A
- 8G,

k—th j—th
Eg A---NEy A+ -NEn,
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where S denotes the square norm of the second fundamental form «
given by S = Zi,j’ahf‘f

Proof. Let V' and V< be the Levi-Civita connections on R;,"+P and
the normal connection on M respectively. Then we get

V'XEz = ZAGAWA"(X)EA

and
V%E, = Zﬂeﬁwﬁa(X)Eﬁ

for any vector field X tangent to M. Since we can regard the general-
ized Gauss map G of M into G(m,p) as in R"-valued function on M,
we have

EG= EiA-- AV E;N- - -AEy,.
ZJ 1 E;~1
Then (2.2) and the Gauss formula imply
j—th

EG=-Y hEZEA--NEqA - -AEn
7,

Let h{};, be the components of the covariant derivative Va of the second
fundamental form a of M. Since the Laplacian of G is given by

AG = —Zi{EiEiG - (Vg,E)G}.
By (2.9), we have

AG =Za,i,j{dh Z h jWap T Z (hf;wik + hiwii) } (E:)
EiN---AE.N---Ep,
j—th
'—Z Bk zkEl/\ /\Eg/\ NE N -NE,,
— SEA---AE,,

j—th
=Y hGEA-- NEq A - -AEm
a’zhj

j—th
- 5 h2 E1A.-- /\Eg/\ NEg A+ -AEy — SG
”7.77
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where we have used the definitions of the connections and the covariant
derivative of the second fundamental form a. It completes the proof.03

Let z( be the isometric immersion of the Grassmann manifold G(m, p)
into RN. For the generalized Gauss map G a map Gp : M—RY is de-
fined by Gy := zgoG. This is also called a generalized Gauss map.

THEOREM 3.3. Let M be a space-like submanifold in R;"""’. Then
the generalized Gauss map Gy is of 1-type if and only if the mean
curvature vector field of M is parallel in the normal bundle, the normal
curvature is flat and the scalar curvature is constant.

Proof. The generalized Gauss map Gy is of 1-type if it satisfies

AGy = MGy
for a constant A. By Theorem 3.1 we can regard G(m,p) as an mp-
dimensional complete simply connected Riemannian manifold of non-
positive curvature. We consider a curve v through the point F1A- - -AE,,
in G(m,p) defined by

v(s) = E1A- - -A(cosh sE; + sinh sEG)A- - -AEn,.
Then the tangent vector 7/(0) of the curve v at s = 0 is given as
j—th
EiA--NEq A+ NEp,.

So we see that

j—th

{EAN - -NEg A---NEp, : j,a}
is an orthonormal basis for the tangent space at the point. When we
regard G(m, p) as an mp-dimensional Riemannian submanifold in the
unit sphere S¥—! and the position vector G is normal to S¥-1 in RV,
k—th j—th
E\A---NEgA---NEgA---AEp,

is normal to G(m,p) in S¥~1. Thus we have

thazg =0, Ra,@jk =0, S= =X
which means that the mean curvature vector field is parallel and the
normal connection is flat, and moreover the squared norm S of the
second fundamental tensor in time-like normal space is constant. The
last statement is equivalent to the fact that the scalar curvature is
constant. It completes the proof of our theorem. O
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4. Proof of Main Theorem

In this section let us prove our theorem, which is an indefinite version
of Chen and Piccini’s result [7). Let M be a space-like surface in R2+7.
Then by Theorem 3.3 and a theorem due to Aiyama (Theorem 10 in
[3]), we have

PROPOSITION 4.1. Let M be a space-like surface in R%"’”. If the
generalized Gauss map Go : M—RN N = (p+ 1)(p + 2)/2, is of 1-
type, then M is locally one of the following surfaces:

(1) maximal space-like surfaces of RZ*?,

(2) maximal space-like surfaces of a totally umbilical hypersurface
M= Mgii(c) in R2%?,

(3) space-like surfaces with constant mean curvature of a totally
umbilic 3-dimensional submanifold M’ = M3(c) in Rf,"'”.

Now we are in a position to prove the theorem in the introduction.

THEOREM 4.2. Let M be a space-like surface in R2*P. Then the
only surfaces with 1-type generalized Gauss map Go : M—RY, N =
(p+ 1)(p + 2)/2, are locally one of the following spaces:

(1) a Euclidean space R?, a hyperbolic space H? or a hyperbolic
cylinder H' xR in R$,

(2) the product H' xH? of two hyperbolic curves in R3CR2'?.

Proof. By Theorem 3.3 the space-like surface M in Rf,“’ has 1-type
generalized Gauss map if and only if the mean curvature vector field h
of M is parallel in the normal bundle, the normal curvature R is flat
and the scalar curvature is constant. Furthermore, because of m = 2,
the parallelism of h is equivalent to the fact that the surface M has
the three situations in Proposition 4.1.

Now we consider the first case (1) in Proposition 4.1. Since it is
maximal in R2*?, the normal curvature R* of M is flat, that is, the
formula (2.7) vanishes. So the Simons type formula (2.11) in this sit-
uation satisfies

1 _ 2 2
§AS_ [Val* + E a(S“)
where

S=> (hg)?=—<o,a>, [VafP= ) (h%)> = — < Va,Va >,

i,J,o 1,7k,
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and <,> denotes the inner product in time-like normal space. This
yields S5 = 0 for any index a, because the squared norm S of the
second fundamental form is constant. Hence the surface M is totally
geodesic and there is a 2-dimensional Euclidean space R? in Rf,"'p in
which M is contained.

Next we investigate the second case (2). Then the surface M is
maximal space-like surface of a totally umbilical hypersurface M =
MP +1(c) R2+” Let X be a principal curvature of a totally umbilical
hypersurface M MP +1(c) in R2*P. Then the Gauss equation (2.5)
implies ¢ = —A%<0.

In the case of ¢ = 0, we can apply the previous result in case (1)
and we see that there is a 2-dimensional Euclidean space R2 in R;i'l
in which M is contained. Suppose that ¢ < 0. We choose a field of
orthonormal frames {F;, Ea, E24p}, 3<a<1 + p, adapted to the Rie-
mannian metric on M such that Ey, Fy are tangent to M and hence
{Es,...E14p} are normal to M in M and Ey4, is normal to M in R2*?.
Then {F;,E,} is a local field of orthonormal frames of M. When M
can be regarded as the surface of M, we have w, = 0 on M, which

implies
Wai = E _h;?‘jwj

and hence the mean curvature vector field h; of M in M = MP +1(c)
is given by by =~} h&E,/2.

Since the mean curvature vector field h of M in Rf,*‘” is parallel in
the normal bundle of M, we see > ;hg; = 0 for any indeces j and c.
That is, we get ) .hf;; = 0 for any indices j and a. This means that
the mean curvature vector field h; of M in M is parallel in the normal
bundle T+ M.

Let h; (resp. hg) be the mean curvature vector of M in M =
MP +1(c) (resp. M in RZ*P). Since M is totally umbilic in R2*?, we
have

Vixh; = Vxh; = —A1p, X + Vixh;
Viyhy = \Hp X

where V and _V’ denote the Levi-Civita connections on semi-Riemannian
space form M and R%“'T’ respectively, Vi and A; denote the normal



328 Soon Meen Choi, U-Hang Ki and Young Jin Suh

connection and the shape operator of M into M and Hj the mean
curvature of M in RZ*P. This gives us to

Vxh = Vixh,

which means that h; is parallel in the normal bundle of M in M,
because so is h.

On the other hand, since the normal connection is flat, the normal
curvature tensor satisfies Rt = 0. So it satisfies Q53 = 0. Suppose that
the hypersurface M is defined by way, = 0. For any indices a, 3<1+p
the structure equations for M satisfy

dwaﬁ + 27S1+p67wa’7/\w’7ﬁ + €24 pWa+pN\W2Lpg = 0,

where we have used (2.6). Again, since M is a hypersurface, by the
above equation we get

dwap + ZWS1+pe7wa7Aw7,3 =0,

which means that the normal curvature tensor of M in M is zero. Con-
sequently, for the maximal space-like surface M in M, it has parallel
mean curvature vector field h; and the flat normal curvature Rf of M
in M. By the argument of Aiyama (3] Chen’s result (Lemma 2.5 in
(5, p-108], Remark 2.1 in [5, p.114]) holds in this situation and there
is a 3-dimensional anti-de Sitter space H3(c) which is totally umbilic
in RS such that MCH3(c). Accordingly, we can apply the above dis-
cussion to M—H3(c)—R35 and we see that the mean curvature vector
field of M in H$(c) is parallel, which is equivalent to the fact that
the mean curvature of M in H$(c) is constant on M. Since the scalar
curvature of M is constant, so are the principal curvatures. By a con-
gruent theorem due to Abe, Koike and Yamaguchi [1], it is contained
in the 2-dimensional hyperbolic space H? or the product space of the
hyperbolic curves H xH! in Rj.

Finally, we consider the case (3) where M is a space-like surface
with constant mean curvature of a totally umbilic submanifold H$(c)
in Rzz,"””. Since the scalar curvature of M is constant, two principal
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curvatures of M are both constant on M. Again, by a theorem due
to Abe,Koike and Yamaguchi [1] M is contained in the 2-dimensional
Euclidean space R?, H?, the hyperbolic cylinder RxH! in R$ and the
product H!xH?! in RS,

Conversely, it is easy to see that these surfaces satisfy the three con-
ditions that the mean curvature vector field is parallel in the normal
bundle, the normal connection is flat and the scalar curvature is con-
stant. It shows that the map G is of 1-type. This completes the proof
of our Theorem. ]
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