DOI QR코드

DOI QR Code

FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E4

  • Received : 2015.07.23
  • Accepted : 2016.03.15
  • Published : 2016.06.25

Abstract

In this paper we study general rotational surfaces in the 4-dimensional Euclidean space $\mathbb{E}^4$ and give a characterization of flat general rotational surface with pointwise 1-type Gauss map. Also, we show that a flat general rotational surface with pointwise 1-type Gauss map is a Lie group if and only if it is a Clifford torus.

Keywords

References

  1. Aksoyak F. K. and Yayli Y., Homothetic motions and surfaces in ${\mathbb{E}}^4$, Bull. Malays. Math. Sci. Soc. 38, 259-269, 2015. https://doi.org/10.1007/s40840-014-0017-9
  2. Arslan K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C. and Ozturk, G., Rotational embeddings in $E^4$ with pointwise 1-type Gauss map, Turk. J. Math. 35, 493-499, 2011.
  3. Arslan K., Bayram B.K., Kim, Y.H., Murathan, C. and Ozturk, G., Vranceanu surface in $E^4$ with pointwise 1-type Gauss map, Indian J. Pure. Appl. Math. 42, 41-51, 2011. https://doi.org/10.1007/s13226-011-0003-y
  4. Arslan K., Bulca B., Kilic B., Kim Y.H., Murathan C. and Ozturk G., Tensor Product Surfaces with Pointwise 1-Type Gauss Map. Bull. Korean Math. Soc. 48, 601-609, 2011. https://doi.org/10.4134/BKMS.2011.48.3.601
  5. Chen, B.Y. Choi, M. and Kim, Y.H., Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. 42, 447-455, 2005. https://doi.org/10.4134/JKMS.2005.42.3.447
  6. Chen, B.Y. and Piccinni, P., Submanifolds with Finite Type-Gauss map, Bull. Austral. Math. Soc., 35, 161-186, 1987. https://doi.org/10.1017/S0004972700013162
  7. Choi, M. and Kim, Y.H., Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38, 753-761, 2001.
  8. Choi, M., Kim, D.S., Kim Y.H, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46, 215-223, 2009. https://doi.org/10.4134/JKMS.2009.46.1.215
  9. Dursun, U. and Turgay, N.C., General rotational surfaces in Euclidean space $E^4$ with pointwise 1-type Gauss map, Math. Commun. 17, 71-81, 2012.
  10. Dursun, U., Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11, 1407-1416, 2007. https://doi.org/10.11650/twjm/1500404873
  11. Dursun, U., Flat surfaces in the Euclidean space $E^3$ with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc. 33, 469-478, 2010.
  12. Dursun, U. and Arsan, G.G., Surfaces in the in the Euclidean space $E^4$ with pointwise 1-type Gauss map, Hacet. J. Math. Stat. 40, 617-625, 2011.
  13. Kim, Y.H. and Yoon, D.W., Ruled surfaces with pointwise 1-type Gauss map,J. Geom. Phys. 34, 191-205, 2000 https://doi.org/10.1016/S0393-0440(99)00063-7
  14. Kim, Y.H. and Yoon, D.W., Classification of rotation surfaces in pseudo Euclidean space, J. Korean Math. 41, 379-396, 2004. https://doi.org/10.4134/JKMS.2004.41.2.379
  15. Ozkaldi S., Yayli Y., Tensor product surfaces in ${\mathbb{R}}^4$ and Lie groups, Bull. Malays.Math. Sci.Soc. 33, 69-77, 2010.
  16. Moore C.L.E, Surfaces of rotation in a space of four dimensions, Ann. of Math.21, 81-93, 1919. https://doi.org/10.2307/2007223
  17. Niang, A., Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc.42, 23-27, 2005 https://doi.org/10.4134/BKMS.2005.42.1.023
  18. Yoon, D.W., Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure. Appl. Math. 32, 1803-1808, 2001.
  19. Yoon, D.W., Some properties of the Clifford torus as rotation surface, Indian J.Pure. Appl. Math. 34, 907-915, 2003.