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CLASSIFICATIONS OF ROTATION
SURFACES IN PSEUDO-EUCLIDEAN SPACE

YouUNG Ho KIM AND DAE WON YOON

ABSTRACT. In this article, we study rotation surfaces in the 4-
dimensional pseudo-Euclidean space ]Eg. Also, we obtain the com-
plete classification theorems for the flat rotation surfaces with finite
type Gauss map, pointwise 1-type Gauss map and an equation in
terms of the mean curvature vector. In fact, we characterize the flat
rotation surfaces of finite type immersion with the Gauss map and
the mean curvature vector field, namely the Gauss map of finite
type, pointwise 1-type Gauss map and some algebraic equations in
terms of the Gauss map and the mean curvature vector field related
to the Laplacian of the surfaces with respect to the induced metric.

1. Introduction

A pseudo-Riemannian submanifold M of the m-dimensional pseudo-
Euclidean space EI* with signature (s,m — s) is said to be of finite
type if its position vector field x can be expressed as a finite sum of
eigenvectors of the Laplacian A of M, that is, x = zo + Ele x;, where
To is a constant map, xi,...,Zr non-constant maps such that Ax; =
Az, €R i =1,2,...,k. If Ay, A, ..., A are different, then M is said
to be of k- type. Similarly, a smooth map ¢ of an n-dimensional pseudo-
Riemannian submanifold M of ET* is said to be of finite type if ¢ is a
finite sum of E7*- valued eigenfunctions of A. As is seen in the recent
publication, for example, [3], [7], [12], [16], [19], [21], [23] and [24], the
notion of finite type Gauss map is a especially useful tool in the study of
submanifolds. Also, it is the natural extension of the study of minimal
submanifolds on which many mathematicians have devoted in the last
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years. The first results on this subject have been collected in book ([8]);
for a recent survey, see [9]. Many works were done to characterize or
classify submanifolds in terms of finite type. In a framework of the
theory of finite type, B.-Y. Chen and P. Piccini ([12]) made a general
study on compact submanifolds of Euclidean spaces with finite type
Gauss map.

It is interesting to ask which submanifolds with finite type Gauss
map are themselves of finite type. In [3] C. Baikoussis, B.-Y. Chen and
L. Verstraelen classified ruled surfaces with finite type Gauss map in
Euclidean m-space E™. Furthermore, in [21] the authors investigated
the finite type Gauss map of the ruled surfaces with non-null base curve
in an m-dimensional Minkowski space ET*, and in [20] D.- S. Kim and
the authors completely classified ruled surfaces with 1-type Gauss map
in the m-dimensional Minkowski spaces ET".

If a submanifold M of a Euclidean space or a pseudo-Euclidean space
has 1-type Gauss map G, then G satisfies AG = A(G + C) for some
A € R and some constant vector C. However, the Laplacian of the
Gauss map of several important surfaces such as catenoids and right
cones in E? ([10]), and helicoids of the 1st, 2nd and 3rd kind, conjugate
of Enneper’s surfaces of the 2nd kind and B-scrolls in E} ([22]) take a
somewhat different form; namely,

(1.1) AG = f(G+C)

for some function f and some constant vector C.

A submanifold M is said to be pointwise I-type Gauss map if its
Gauss map satisfies (1.1) for some smooth function f on M and constant
vector C. A pointwise 1-type Gauss map is called proper if the function
f defined by (1.1) is non-constant. A submanifold with pointwise 1-type
Gauss map is said to be of the first kind if the vector C in (1.1) is the
zero vector. Otherwise, the pointwise 1-type Gauss map is said to be of
the second kind.

In [22] the present authors completely classified all possible ruled sur-
faces with pointwise 1-type Gauss map of the first kind in Minkowski
3-space E} and obtained a new characterization of minimal ruled sur-
faces. Also, the first author with B.-Y. Chen and M. Choi ([10]) recently
investigated surfaces of revolution with pointwise 1-type Gauss map in
E3.

Following the ideas of [16], one can also study surfaces in Euclidean
3-space for which the Gauss map G satisfies a special algebraic condition
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of the form
(1.2) AG = AG, AcR¥*3,

Concerning this condition, F. Dillen, J. Pas and L. Verstraelen ([15])
studied surfaces of revolution in Euclidean 3-space [E3 such that its Gauss
map G satisfies the condition (1.2). C. Baikoussis and D. E. Blair ([2])
proved that the ruled surfaces in E? satisfying the condition (1.2) are
circular cylinders or planes. C. Baikoussis and L. Verstraelen ([5, 6,
7]) studied the helicoidal surfaces, the translation surfaces and the spi-
ral surfaces in E2 satisfying the condition (1.2). Also, for the Lorentz
version, S. M. Choi ([13, 14]) completely classified the surfaces of rev-
olution and the ruled surfaces with non-null base curve satisfying the
condition (1.2) in Minkowski 3-space E$. Furthermore, L. J. Alias, A.
Ferrdndez, P. Lucas and M. A. Merofio ([1]) studied the ruled surfaces
with null ruling satisfying the condition (1.2) in Minkowski 3-space E3.
The second named author ([25]) recently classified translation surfaces
satisfying the condition (1.2) in E3.

Now, we counsider the following non-degenerate rotation surfaces in
the 4-dimensional pseudo-Euclidean space E3 ([23]):

(1.3 a)
M; : z(u,v) = (z1(u,v), x2(u, v), x3(u, v), x4(u, v))
z1(u,v) = r(u) coshusinhv, z2(u,v) = r(u)sinhucoshv
z3(u,v) = r(u) sinhusinhv, x4(u,v) = r(u) coshucoshwv,
u,v € R
(1.3 b)
My : z(u,v) = (21(u, v), 22(u, v), z3{u, v), 24(u, v))
z1(u,v) = r(u)sinhuwcosv, z2(u,v) = r(u)sinhusinv
z3(u,v) = r(u) coshucosv, z4(u,v) = r(u)coshusinwv,
u € R,v € [0,27]

where r(u) is a smooth function. We call M; and M rotation surfaces
of type I and I, respectively.

For these surfaces, L. H. Liu ([23]) studied the flat rotation surfaces
of finite type in the 4-dimensional pseudo-Euclidean space Ei. On the
other hand, the second named author ([24]) completely classified the
flat rotation surfaces with finite type Gauss map in the 4-dimensional
Euclidean space E*.
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In § 2 we recall some basic formulas and Gauss map of submanifolds
in pseudo-Euclidean spaces. In § 3 we study the flat rotation surfaces
with finite type Gauss map in the 4-dimensional pseudo-Euclidean space
E3, and in § 4 we investigate the flat rotation surfaces with pointwise 1-
type Gauss map. In the last two sections we are concerned with the flat
rotation surfaces satisfying the partial differential equations AG = AG
and AH = AH for some real matrix A, where H is the mean curvature
vector field of the surfaces.

2. Preliminaries

Let ET* be the m-dimensional pseudo-Euclidean space with signature
(s,m — s). Then the metric tensor § in EJ* has the form

m—s m

g = (dﬂ?i)2 — Z (dl‘i)2,
i=1 t=m—s+1
where (z1,%2,...,Zm) is a standard rectangular coordinate system in

E™.

A pseudo-Riemannian sphere and a pseudo-hyperbolic space are very
typical examples of nice submanifolds of ET* defined by respectively as
follows : For a point ¢ € ET* and r > 0, we put

S He,r) = {2z €E™| <z~ ¢,z —c>=r1},

H™ Me,r)={z €E™| <z —c,x —c>=—1?}

where < , > denotes the indefinite inner product on E7*. It is well-
known that S™1(c,7), H";'(c,r) are complete pseudo-Riemannian
manifolds with constant sectional curvature 7~2 and —r~2, respectively.
The pseudo- Riemannian sphere ST~ !(c,r) is diffeomorphic to R® x
Sm~1=s . the pseudo-hyperbolic space H™*(c,r) is diffeomorphic to
S*=1 x R™~¢. The hyperbolic space H™ !(c,7) is defined by

H™ Yc,r)={2 €EP| <z —c,z —¢c>= —r?

; Tm > 0}.
In particular, if m = 2, the hyperbolic space H*(c,r) is called the plane
hyperbola.

Let z : M™ — E™ be an isometric immersion of an oriented n-
dimensional pseudo-Riemannian submanifold M™ into EJ*. From now
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on, a submanifold in E7* always means pseudo-Riemannian. Let v be
the Levi-Civita connection of E7* and ¥/ the induced connection on M™.
Let e1,...,€n,€n+1,---,€m be an adapted local orthonormal frame in
E7* such that ej,es,...,e, are tangent to M"™ and epy1,€n42,.-.,6m
normal to M"™. We shall make use of the following convention on the
ranges of indices : 1 < 4,5,--- <mn, n+1 < st,---<m, 1<K
AB,..-<m.

Let wy be the dual 1-form of e4 defined by wa(X) =< e4, X > and
€4 =< ey, e4 >= 1. Also, the connection forms w4p are defined by

(2.1) deA:ZEBwABeB, wap +wpa =0.
Then, the structure equations of EI* are obtained as follows :
(2.2) deIZé‘BwAB Awg,

(2.3) dwap :Zechc Awep.

The canonical forms {wa} and the connection forms {wap} restricted
to M™ are also denoted by the same symbols. We then have

(2.4) ws=0 for s=n+1,...,m.

It follows from (2.4) and the Cartan lemma that the exterior derivative
of (2.4) gives rise to

(2.5) Wis = Zejhfng', hi; = hj;.
J

The mean curvature vector H of M™ in E7* is defined by

1 m n
(2.6) H = - Z Zeisshfies.
s=n-+11=1
For lifting or lowering indices we have

wAzsAwA and wfszwAB.

Furthermore, we have the covariant differentiation on e; given by

(2.7) de; = ZEAwiAeA or §_76iej = ZEBij(ei)eB.
A B
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For any real valued function f on M™ the Laplacian Af of f is defined
by

(2.8) Af =— Zei(ﬁeﬁeif ~ Veef)-

Let us now define the Gauss map G of a submanifold M™ into G(n,m)
in A" E™, where G(n,m) is the Grassmannian manifold consisting of all
oriented n-planes through the origin of E™ and A" E™ is the vector space
obtained by the exterior product of n vectors in EJ*. Let e;, A---Ae;,

and fj, A A f;,. be two vectors of A" ET*, where {e1,€2,... ,en} and
{f1, fe, ..., fm} are the orthonormal bases of E7*. Define an indefinite
inner product {,) on A" E™ by

(29) <ei1 /\ e /\ e'in7fj1 /\ U /\ fjn) = det(<e’ll’fjk>)

Therefore, for some positive integer k, we may identify A" E™ with some
pseudo-Euclidean space EfY, where N = (™). The map G : M" —
G(n,m) C EY defined by G(p) = (e1 Aex A+ Aey)(p) is called the
Gauss map of M™ that is a smooth map which carries a point p in M™
into the oriented n-plane in E7* obtained from the parallel translation
of the tangent space of M™ at p in E?*. Then, the Gauss image G(M)
can be viewed as G(M) C SN ~%(0,1).

3. Rotation surfaces with finite type Gauss map

In this section we study the flat rotation surfaces of type I or type
II with finite type Gauss map in the 4-dimensional pseudo-Euclidean
space E3.

Let M be the rotation surface of type I (resp. type II) in E4 defined
by (1.3 a) (resp. (1.3 b)). We choose a moving frame e1, ez, e3, e4 such
that e, ez are tangent to M of type I and es, e4 are normal to M of type
I and choose a moving frame &;, s, €3, €4 such that €;, & are tangent to
M of type II and €3, &4 are normal to M of type I1 which are given by
the following ([23]) :

(3.1 a)
e1 = (cosh u cosh v, sinh u sinh v, sinh u cosh v, cosh u sinh v)

ey = A%(Ag sinh v, A3 cosh v, As sinh v, Az cosh v)
€3 = Zl; (A3 sinh v, A; sinh v, As sinh v, A3 coshv)

eq = —e(sinh u cosh v, cosh u sinh v, cosh u cosh v, sinh usinh v),
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(3.1 b)

€1 = (- sinh u sin v, sinh u cos v, — cosh u sin v, cosh u cos v)

™

9 = A%(Ag cos v, Az sinv, As cosv, Ay sinv)

Il

3 = A%(Ag cos v, Aa sinv, Az cosv, Az sinv)

gl

4 = &(cosh u sin v, — cosh u cos v, sinh u sin v, — sinh u cos v),

where we put A, = \/e(r2 — 772),e = £1,e(r?—r") > 0, Ay = ' coshu+
rsinh u, A3 = ' sinhu + r coshu. Then, it is easily seen that

<ep,ep >=—<ey,eq4>=1, <eg,e9>=— < e3,63 >=E¢;

— < ey,6] >=< 4,64 >=1, < &y,8y >=— < €3,83 >=¢.

Also, we have

(3.2 a) wy =rdv, we =e\/e(r? —r?)du =eAdu,
(3.2 b)

Wi = —T'dl), Wy = 6A1du,

which imply ej, es, € and é; are written as

10 1 9

(3.3 ) =5 2T A au
_ 10 10
(3.3 b) a=-rg5 2T e

As is introduced in section 2, the Gauss map G (resp. G) of M of type I
(resp. type I1) is given by G = e; A ey (resp. G = €, A é;). Using (2.3),
(2.4), (3.1 a), (3.1 b), (3.2 a) and (3.2 b) we can obtain the coefficients
of the second fundamental form h and the connection forms wap as
follows:

- 3 3 13 _ 3 _
(3.4 ) hiy = —a, his=h3 =0, hz=¢f,
’ i, =hi =0, hi =h: =ca
11 = 22 = Y, 12 = gy = €4,
73 _ 73 _ 73 _ 73 _
(3 4b) { hiy =a, hiz=h3; =0, hj= ef,
: 74 _ 74 _ T4 _ T4 _
hiy = h3 =0, hi; = hy = —eaq,
= Wiz = —QkWp, Wiz = —awi, Wig4 = awa,
(3.5 a)
woz = Bwa, wo4 = cawy, W34 = EQKWI,
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W2 = —QkW], W13 = —0W1, Wi4 = —0Wy
(3.5 b) { ’ ’

Wo3 = Pwg, Wgq =c0W;, W34 =EQKWL,

where we have put a = A]', Kk = —Tri, B = eA73(2r2 — ' —r?).
The Gaussian curvature K of M of type I and K that of M of type I1
are respectively given by

4

(36 2) K= ng( 11032 — highd)) = AT (" —rr")
s=3

and

(3.6 b) K = A7 (" — 1'%).

Moreover, combining (2.7), (3.4 a), (3.4 b), (3.5 a) and (3.5 b) we have

@elel = —E0Ke€s + Ees, @eleg = (k€1 — EQey4,

@eleg = e) — Eqkey, 66164 = —weg + akes,
(37 a) 66261 = —Qey, 66262 = "56637

Ve,€3 = —€fe2,  Ve,e4 = —ae1,

Ve, €1 = —€QkeE, Ve €2 = 0
and

@élél = —Eakeq + cnés, (_751 €2 = —Ke1 + €néy,

Ve, €3 = —Q€1 + EQKEy, Ve, €4 = —Q€3 + aKEs,
(3.7b) Ve &1 = —0éy, Ve, &2 = —£fes,

Ve, €3 = —£f3€s, Ve84 = —01,

Ve, €1 = —€0key, Ve, €2 = 0.

Suppose that the rotation surface M of type I or I is flat. Then, (3.6
a) and (3.6 b) imply rr" = /2. Thus r(u) = ce** for some constants
¢ # 0 and k. If necessary, by an appropriate homothetic transformation

we may assume that ¢ = 1. Thus we have
(3.8) r(u) = ek a——ﬁ—Lku— e(1-k*)>0
' ’ e(1 — k2)’ '
From (3.3 a), (3.3 b) and (3.8) we get
(3.9)
er(a) = &(a) =0, ey(a)=&(a)=—cka?, &=k = constant.
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If k = 0, then r(u) = 1. In this case, the surface M of type I is the
product of two plane hyperbolas, and the surface M of type II is the
product of a plane circle and a plane hyperbola.

Now, we assume that & # 0. By using (2.8), (3.7 a), (3.7 b), (3.8),
(3.9) and straight-forward computation, the Laplacians AG and AG of
the Gauss maps G and G can be expressed as

(3.10 a) AG = —4ea?e; Ney + (3ck — k)ale; Aes — (ek + k)aes Aey

and

(3.10 b) AG = —4eca’®e; A&y + (3ek + k)aey Aé3 + (ek — k)aEy N Ey.

On the other hand, by a direct calculation we have

( A(a™) = k?(n —e(n + 1)n)a™+2,

Ae; ANes) = —(k +ck)a?er A eg + (2ek? — 2e)ae; Aes
*(2]{:2 + 2)(1262 Neq+ (3]{2 - €k)a263 N ey,

(3.11a) < AleaAeq) = (3k —ek)aley Aea — (2k% + 2)a?e; Aes

+(2ek? — 2e)aes Aeq — (k + ek)a’es A ey,

Ales Aey) = —(ek + k)a?ey Aeg + (3ek — k)aey A ey
L —4ea’es3 Ney

and
(3.11 b)
(Ala™) = —k*(n +e(n + 1)n)a™t?,

Afe; Ne3) = (k —ek)a?e; A ey + (2ek? — 2¢)a2e; N es
—(2k% + 2)aey A&y + (3k + ek)a’es A &y,
A(ea A &y) = (3k + ck)ae; A ey — (2k2 + 2)ae; N e
+(2ek? — 2e)a’ez N &4 + (k — ek)a?Es A g,
| A3 Ney) = (ek — k)a?e; Aes + (3ek + k)a?ex A &g — deaes A éy.

Therefore, from (2.8), (3.10 a), (3.10 b), (3.11 a) and (3.11 b) we obtain
A’G

= (—4€k2 + 12k% + 16)a4el A es
+ (12ek® — 12k3 — 8k — 16k)a’e, Aes
+ (—4ek® + 4k3 — 8k)ates Aey + (46k2 + 4k ates A ey

(3.12 a)
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and
(3.12 b)
A%G = (20ck? + 28k* 4 16)a’e; A &y

+ (—12ek3 — 12k3 — 24ek — 16k)a’e, A es

+ (—dek® — 4k3 — 24k)a’ey A &y + (20ek® + 12k%)a’e; A &y,
Proceeding by induction we can have
(3.13 a) A"G = anctei ANes+b,a2 e Nes e, es ey +d, 0’ esNey
and
(3.13 b) A"G = 6,02 81 NEx+br 02" 8 NEs+Cpat ey NEy+d T Es Ny,
where di = 0,d; = 0 and ap, by, Cn, dn, Gn, O, Cn, dn are some constants
for n > 1. In fact, (3.10 a), (3.10 b), (3.12 a) and (3.12 b) show that
(3.13 a) and (3.13 b) are true for n = 1,2. Suppose that (3.13 a) and

(3.13 b) are true for m. Then, by using (3.11 a), (3.11 b), (3.13 a) and
(3.13 b) one can check after a long computation

Am+1G
= A(0®™)(amey A es + bmer Aes+ cmea A eg + dmes A ey)

+ a2mA(amel Aeg +bner ANes+ emes Neg + dmes N ey)

— 262((12"’)%92 (ame1 N ea + bper Aes+ cmea A eg + dmes Aey)
= ame10°™ e Aeg + b1 e Aes + Cm+10£2m+2

+ dm+1a2m+2€3 N ey

ey N\ éy

and
A™HIG = G 1a® ™28, A8y + bg102 ™28 A Es + et e N gy
+ dm+102™2E3 A2y,

where we have put

(ams1 = (2mk? — 2emk?(2m + 1) — 4e)am + (dmk — k — k)b,
+(4demk + 3k — ck)cpm,

b1 = (4mk — 3¢k — k)am + (2mk? — 2emk?(2m + 1) + 2¢k?
—28)by, — (2k% + 2)em + (4emk — ek — K)dpm,

ﬁ Cmi1 = (demk — ek — k)am — (2k + 2)b,, + (2mk?
—2emk?(2m + 1) + 2ek? — 2¢)cm + (dmk + 3ck — k)dpm,

dmt1 = (demk + 3k — ek)by, + (Admk — k — ek)cn,

\ +(2mk? — 2emk?(2m + 1) — 4€)d,y,
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and

( Tl = (—2mk? — 2emk?(2m + 1) — 4€)@y, + (dmk + k — €k)by,
+(4emk + 3k + k),
b1 = (4mk + 3k + k), + (—2mk? — 2emk?(2m + 1)
+26k? — 2€)by, — (2k2 + 2)Gp + (demk + ek — k)dn,
Cmi1 = (demk + ek — k)@, — (2k% + 2)b,,
+(—2mk? — 2emk?(2m + 1) + 2ek? — 2¢)Em

=

+(4dmk + 3ek + k)d,,
dim+1 = (demk + 3k + ek)by, + (dmk + k — €k)Ep,
\ +(—2mk? — 2emk?(2m + 1) — 4€)d,y,.

Therefore, we can conclude that (3.13 a) and (3.13 b) hold for any
positive integer n.

We suppose that the flat rotation surface M of type I has finite type
Gauss map in E5. Then, there exist real numbers I1,ls, . .., [; such that

(3.14) AFLG + ARG+ 1hAG =0
for some positive integer k. By using (3.13 a), (3.14) is nothing but
Pla)es Nea + Q(a)er Nes + R(a)ea Aeg + S{a)es ANeqg =0,

where P(s),Q(s), R(s) and S(s) are some polynomials in s of degree
2k + 2 with constant coefficients. It is obvious that P(a) = 0,Q(a) =
0, R(a) = 0 and S(c) = 0 because e;Ae; (i # j) are linearly independent.
Thus, o must be a constant.

Next, we assume that the flat rotation surface M of type II is of
finite type Gauss map in Ei. Then, by the similar discussion of that
of M of type I we can see that « is also a constant. Therefore, from
(3.8) we have k = 0 and thus r(u) = 1 and @ = -3 = 1. Also, from
(3.10 a) (resp. (3.10 b)) we obtain AG = —4eG (resp. AG = —4eG),
that is, the surface M of type I (resp. type II) is of 1-tvpe Gauss map.
Consequently, from (1.3 a) the surface M of type I is the product of
two plane hyperbolas, and from (1.3 b) the surface M of type II is the
product of a plane circle and a plane hyperbola.

Thus we have
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THEOREM 3.1. Let M be a flat rotation surface of type I (resp. type
II) in E3. Then, the following are equivalent:

1. the Gauss map G on M is of finite type,

2. the Gauss map G on M is of 1-type,

3. M is the product of two plane hyperbolas (resp. the product of a
plane circle and a plane hyperbola).

4. Rotation surfaces with pointwise 1-type Gauss map

In this section we investigate the flat rotation surfaces of type I (resp.
type I1) in E} with pointwise 1-type Gauss map satisfying (1.1). If M
is the flat rotation surface of type I, then we have from (1.1)

(4.1) AG = f(G+CO)
for some function f and some constant vector C.

We may assume that the rotation surface M of type I is parametrized
by (1.3 a). From (2.9), (3.10 a) and (4.1) we have

(4.2) 4o’ =ef+ f<C,e; Neg >,
(4.3) (ek — 3k:)a2 =f<(C,e1 Nes >,
(4.4) (k+ek)o? = f < Coea Neg > .

We then note that a smooth function f is non-zero. In fact, if f vanishes
on some open subset U, then by (4.1) and (3.10 a) « is zero on U, which
is a contradiction. Let W be the open subset of M consisting of points
where f is non-zero. We now consider the matters on W for a while.
Then, we obtain from (4.1)

(4.5) <C,e1Neg >=0,<C,egNes >=0,< C,ez ANeg >=1.

By differentiating (4.5) with respect to u and using the first and third
equation in (4.5), we get

(4.6) k<C,ei1hNe3>—<Cieg Neg > —ck < CiegNeyg >=0
and

(4.7) e<CegNeys>+<Cie; Nesg >=0,
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which imply
(4.8) < C,et Ney > +2ek < Coex Aey >= 0.
Combining (4.3), (4.4) and (4.7) we then have
(4.9) ek —k=0.

If e = —1, then we have k = 0. Together with (3.8), we have r(u) = 1
and a(u) = 1. So, the function f is a constant and C' = 0. Therefore, the
Gauss map G is of global 1-type, that is, AG = 4G because of (3.10 a).
Consequently, from Theorem 3.1 the surface M of type [ is the product
of two plane hyperbolas.

If e = 1, then we have from (4.2), (4.4) and (4.8)

(4.10) f =4k*a® — 402

Thus, a smooth function f depends only on u.
On the other hand, by (3.3 a), (3.7 a) and (4.4) we get

(4.11) 2k’ f! = (dkao’ + 40” + f)f,

where the prime denotes the differentiation with respect to u. From
(4.10) and (4.11) we thus have

(4.12) k(1 — k%) =0,

which gives k = 0 because of (3.8). Hence, r(u) = 1 and a(u) = 1.
In this case we can also show that a smooth function f is a constant
and C = 0. Therefore the Gauss map is of 1-type by (3.10 a}, that is,
AG = —4G. By Theorem 3.1 the surface M of type I is the product of
two plane hyperbolas.

Similarly, we can prove that the flat rotation surface M of type I1
with pointwise 1-type Gauss map has global 1-type Gauss map. Conse-
quently, from Theorem 3.1 the surface M of type II is the product of a
plane circle and a plane hyperbola.

In conclusion, we obtain

THEOREM 4.1. A flat rotation surface M of type I or II with point-
wise 1-type Gauss map in E3 has global 1-type Gauss map, i.e., M is
either the product of two plane hyperbolas or the product of a plane
circle and a plane hyperbola.
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5. Rotation surfaces satisfying AG = AG
In this section we study the flat rotation surfaces of type I or type

II in E} satisfying the condition (1.2). For a while we only consider the
flat rotation surface M is of type I. Then, we have

(5.1) AG = AG, A e RS,

We may assume that M is parametrized by (1.3 a). From (5.1) and
(3.10 a) we have

(5.2) AleiAey) = —4ea’e; Aey+(3ck —k)aPe; Aes — (ek+k)aes Aey.
Since a is a non-zero function, by (3.7 a), (3.9) and (5.2) we obtain
(5.3) AleaNes)+A(eiNey) = (4ek® —4e)a’e; Neg+(dek? —4e)ales Nes.
On the other hand, the equation (3.7 a) gives
Ve, Ale2 Nez) =0 and e, Aler Aes) =0,

which imply
(5.4) e(k* = 1)’ =0
with the aid of (3.3 a), (3.7 a) and (5.3). Thus, o« must be a constant
because of (3.8). By (3.8) we have k = 0 and thus 7(u) =1 and o =
—f = 1. Consequently, from (3.10 a) the surface M of type I has 1-type
Gauss map.

Similarly, we can prove that the flat rotation surface M of type 11

satisfying the condition (5.1) has 1-type Gauss map.
Thus we have

THEOREM 5.1. Let M be a flat rotation surface of type I or II in
E3. Then, M has global 1-type Gauss map G if and only if the Gauss
map G satisfies a partial differential equation

AG = AG, A cR6%S,
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6. Rotation surfaces satisfying AH = AH

In this section we look into the flat rotation surfaces of type I (resp.
type II) in E3 satisfying the following condition

(6.1) AH = AH, (resp. AH=AH) A AcR"

where H (resp. H) denotes the mean curvature vector on M of type T
(resp. type II).

Let M be a rotation surface of the type I or I1. We assume that the
rotation surface M is flat. Then, from (2.6), (3.4 a), (3.4 b) and (3.8)
the mean curvature vector H of M of type I and H that of M of type
11 are respectively given by

4 2

1
(6.2 a) H = 3 Z Zeisshfies = caes
s=3 i=1
and
(6.2 b) H = cxés.

By straightforward computation, the Laplacians AH and AH of the
mean curvature vectors H and H with the help of (2.8), (6.2 a) and (6.2
b) turn out to be

(6.3 a) AH = (3k — ck)a’ey + (ek* — k* — 2)ae3
and

(6.3 b) AH = (3k + ek)aléy — (ek? + k? + 2)a’és,
respectively.

Let M be the flat rotation surface of type I satisfying the condition
(6.1). Since « is a non-zero function, from (6.1), (6.2 a) and (6.3 a) we
obtain

(6.4) Aez = (3ck — k)a’es + (k? — ek? — 2¢)a’es.
From this together with (3.3 a) and (3.7 a) we also have

(6.5) Aez = (200! (3ek — k) + o® (k* — ek? — 2¢)) e2
+ (a?(3ek — k) + 200/ (k* — ek? — 2¢)) e3,
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from which, (3.3 a), (3.7 a) and (6.5) yield

(6.6)
Aes = ((36k — k) (2% + 200" + 0?) + 4o (K* — ek? — 25)) €2

+ (4aa’(3sk — k) + (k% — ek® — 26)(a® + 20/% + aa")) es.
Thus, by combining (6.4) and (6.6) we have

6.7) 3¢k — k)(a'* + a”’) + 200/ (k2 — ek? — 2¢) = 0,
' 200 (3ek — k) + (k2 — ek? — 26)(o/® + o) = 0,

which imply

(6.8) ad ((k? — ek? — 2¢)? — (3ck — k)?) = 0.
If ¢ = 1, then we have

(6.9) ad/ (1 -k =0,

from which « is a constant because of (3.8). If we make use of (3.8)
again, then we obtain k = 0, r{(u) = 1 and « = 1. Thus the equation
(6.3 a) gives AH = —2H, and it is easily seen that the surface M of type
I is of 1-type. Furthermore, when r(u) = 1, the surface is the product
of two plane hyperbolas.

Let € = —1. In the case, we have

(6.10) ad/ (k2 —1)2 =0,

from this, a is also constant. It follows that £ =0, r(u) =1 and a = 1.

Therefore, by (6.2 a) and (6.3 a) the surface M of type I is of 1-type.
Similarly, we can prove that the flat rotation surface M of type II

satisfying the condition (6.1) is of 1-type and also the surface M of type

11 is the product of a plane circle and a plane hyperbola.
Consequently, we have the following

THEOREM 6.1. Let M be a flat rotation surface of type I or II in
E3. Then, M is of 1-type if and only if the mean curvature vector H
satisfies a partial differential equation

AH = AH, AcR¥™

Combining the our Theorems 3.1, 4.1, 5.1, 6.1 and the main theorems
in [23], we have the following
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THEOREM 6.2 (CHARACTERIZATION). Let M be a flat rotation sur-

face of type I or II in E5. Then the following are equivalent:

Gk o

1. M is of finite type,

M is of 1-type,

M has finite type Gauss map,

M has 1-type Gauss map,

M has pointwise 1-type Gauss map,

6. the Gauss map G of M satisfies a partial differential equation

AG = AG for some real matrix A,

7. the mean curvature vector H of M satisfies a partial differential

equation AH = AH for some real matrix A,

8. M is either the product of two plane hyperbolas or the product of

a plane circle and a plane hyperbola.
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