• Title/Summary/Keyword: Fuzzy differential equations

Search Result 49, Processing Time 0.02 seconds

A NUMERICAL METHOD OF FUZZY DIFFERENTIAL EQUATIONS

  • Jun, Younbae
    • The Pure and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • In this paper, we propose a numerical method to solve fuzzy differential equations. Numerical experiments show that when the step size is small, the new method has significantly good approximate solutions of fuzzy differential equation. Graphical representation of fuzzy solutions in three-dimension is also provided as a reference of visual convergence of the solution sequence.

Approximate solution of fuzzy quadratic Riccati differential equations

  • Tapaswini, Smita;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.255-269
    • /
    • 2013
  • This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.

STABILITY OF A PERIODIC SOLUTION FOR FUZZY DIFFERENTIAL EQUATIONS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.217-222
    • /
    • 2003
  • In this paper, we consider the fuzzy differential equations (equation omitted) where F(t, x(t)) is a continuous fuzzy mapping on [0, $\infty$) ${\times}$ E$\^$n/. The purpose of this paper is to prove that the solution ${\Phi}$(t) of the fuzzy differential equations is equiasymptotically stable in the large and uniformly asymptotically stable in the large.

THE DOUBLE FUZZY ELZAKI TRANSFORM FOR SOLVING FUZZY PARTIAL DIFFERENTIAL EQUATIONS

  • Kshirsagar, Kishor A.;Nikam, Vasant R.;Gaikwad, Shrikisan B.;Tarate, Shivaji A.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.177-196
    • /
    • 2022
  • The Elzaki Transform method is fuzzified to fuzzy Elzaki Transform by Rehab Ali Khudair. In this article, we propose a Double fuzzy Elzaki transform (DFET) method to solving fuzzy partial differential equations (FPDEs) and we prove some properties and theorems of DFET, fundamental results of DFET for fuzzy partial derivatives of the nth order, construct the Procedure to find the solution of FPDEs by DFET, provide duality relation of Double Fuzzy Laplace Transform (DFLT) and Double Fuzzy Sumudu Transform(DFST) with proposed Transform. Also we solve the Fuzzy Poisson's equation and fuzzy Telegraph equation to show the DFET method is a powerful mathematical tool for solving FPDEs analytically.

Existence of Periodic Solutions for Fuzzy Differential Equations

  • Kwun, Young-Chel;Kim, Jeong-Soon;Hwang, Jin-Soo;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • In this paper, we investigate the existence and calculation of the expression of periodic solutions for fuzzy differential equations with three types of forcing terms, by using Hukuhara derivative. In particular, Theorems 3.2, 4.2 and 5.2 are the results of existences of periodic solutions for fuzzy differential equations I, II and III, respectively. These results will help us to study phenomena with periodic peculiarity such as wave or sound.

SOLVING FUZZY FRACTIONAL WAVE EQUATION BY THE VARIATIONAL ITERATION METHOD IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.381-394
    • /
    • 2019
  • In this paper, we are extending fractional partial differential equations to fuzzy fractional partial differential equation under Riemann-Liouville and Caputo fractional derivatives, namely Variational iteration methods, and this method have applied to the fuzzy fractional wave equation with initial conditions as in fuzzy. It is explained by one and two-dimensional wave equations with suitable fuzzy initial conditions.

FUZZY DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITION

  • JEONG JAE UG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.509-517
    • /
    • 2005
  • We shall prove the existence and uniqueness theorem of a solution to the non local fuzzy differential equation using the contraction mapping principle.

The existence and uniqueness of solution for the nonlinear fuzzy differential equations with nonlocal initial condition (비국소 초기 조건을 갖는 비선형 퍼지 미분방정식에 대한 해의 존재성과 유일성)

  • 박종서;김선유;강점란;권영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.715-719
    • /
    • 2001
  • In this paper, we study the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equations with nonlocal initial condition in E$^{2}$$_{N}$

  • PDF

ON FUZZY STOCHASTIC DIFFERENTIAL EQUATIONS

  • KIM JAI HEUI
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.153-169
    • /
    • 2005
  • A fuzzy stochastic differential equation contains a fuzzy valued diffusion term which is defined by stochastic integral of a fuzzy process with respect to 1-dimensional Brownian motion. We prove the existence and uniqueness of the solution for fuzzy stochastic differential equation under suitable Lipschitz condition. To do this we prove and use the maximal inequality for fuzzy stochastic integrals. The results are illustrated by an example.

SOLUTIONS OF A CLASS OF COUPLED SYSTEMS OF FUZZY DELAY DIFFERENTIAL EQUATIONS

  • Wu, Yu-ting;Lan, Heng-you;Zhang, Fan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.513-530
    • /
    • 2021
  • The purpose of this paper is to introduce and study a class of coupled systems of fuzzy delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define solutions of the coupled systems as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the problems. Furthermore, we prove existence and uniqueness of solution for the considered systems, and then a solution algorithm is proposed. Finally, we present an example to illustrate our main results and give some work that can be done later.