# SOLVING FUZZY FRACTIONAL WAVE EQUATION BY THE VARIATIONAL ITERATION METHOD IN FLUID MECHANICS

• KHAN, FIRDOUS (DEPARTMENT OF MATHEMATICS, DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY) ;
• GHADLE, KIRTIWANT P. (DEPARTMENT OF MATHEMATICS, DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY)
• Accepted : 2019.12.12
• Published : 2019.12.25

#### Abstract

In this paper, we are extending fractional partial differential equations to fuzzy fractional partial differential equation under Riemann-Liouville and Caputo fractional derivatives, namely Variational iteration methods, and this method have applied to the fuzzy fractional wave equation with initial conditions as in fuzzy. It is explained by one and two-dimensional wave equations with suitable fuzzy initial conditions.

#### References

1. A. Amiri, Variational iteration method for solving a Fuzzy Generalized Pantograph Equation, Journal of Fuzzy set valued Analysis, 2014 (2014), 1-11.
2. S.L. Chang, L.A. Zadeh, On Fuzzy mapping and control, IEEET. Systems Man Cybernetics, 2 (1972), 330-340.
3. Thomason, Convergence of powers of fuzzy matrix, Journal of Mathematical Analysis and Application, 57 (1977), 476-480. https://doi.org/10.1016/0022-247X(77)90274-8
4. A. F. Jameel,The Variational iteration method for solving Fuzzy Duffing's Equation, International Scientific Publications and Consulting Services 2014 (2014), 1-14.
5. E .Khdadadi, E. Celik, The Variational iteration method for fuzzy Fractional differential equations with uncertainty, Fixed Point Theory and Applications 2013 (2013), 1-7. https://doi.org/10.1186/1687-1812-2013-1
6. H. Jafari, H. Tajadodi,He's Varitional iteration method for solving Fractional Riccati differential equation, International Journal of Differential Equations 2010 (2010), 1-8.
7. S. Abbasbandy, T. Allahviranloo, P. Darabi, O. Sedaghatfar, Variation iteration method for solving N-th order Fuzzy differential equations, Mathematical and Computational Applications 16 (2011), 1-8 https://doi.org/10.3390/mca16010001
8. A.D. Kumar, T.R. Kumar, Exact solution of some linear fuzzy fractional differential equation using Laplace transform method, Global Journal of Pure and Applied Mathematics, 13 (2017), 5427-5435.
9. S. Salahshour, T. Allahwraanloo, S. Abbasbandy,Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communications in Nonlinear Science and Numerical Simulations, 17 (2012), 1372-1381. https://doi.org/10.1016/j.cnsns.2011.07.005
10. K.P. Ghadle and F. Khan, Solution of FPDE in Fluid Mechanics by ADM, VIM and NIM, American Journal of Mathematical and Computer Modelling, 2 (2017), 13-23.
11. F. Khan and K.P. Ghadle, Systematic Approximation of Three Dimentional Fractional Partial Differential Equations in Fluid Mechanics, Journal of the Korean Society for Industrial and Applied Mathematics, 23 (2019), 253-266.
12. Wooyoung Choi,Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth, Journal of Fluid Mechanics, 295 (1995), 381-394. https://doi.org/10.1017/S0022112095002011
13. J. H. He, Some Asymptotic Methods for Strongly Nonlinear Equations, Internat. Journal Modern Physics. B, 20 (2006), 1141-1199. https://doi.org/10.1142/S0217979206033796
14. J. H. He, Variational Iteration Method for Delay Differential Equations, Comm. Non-Linear. Sci. Numer. Simulation, 2 (1997), 235-236. https://doi.org/10.1016/S1007-5704(97)90008-3
15. J. H. He, Variational Iteration Method- A Kind of Non-Linear Analytical Technique: Some Examples, Internat. J. Non-Linear Mech, 34 (1999), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
16. L. Assas, Variational Iteration Method for Solving Coupled-Kdv Equations, Chaos Solutions Fractals, 38 (2008), 1225-1228. https://doi.org/10.1016/j.chaos.2007.02.012
17. M. A. Noor, K. I. Noor, S. T. Mohyud-Din, Variational Iteration Method For Solving Sixth-Order Boundary Value Problems, Commun. Nonlinear Sci. Numer. Simulat, 14 (2009), 2571-2580. https://doi.org/10.1016/j.cnsns.2008.10.013
18. M. Ghanbari, Solution of the First Order Linear Fuzzy Differential Equations by Some Reliable Methods, Journal of fuzzy set and analysis, 2012 (2012), 1-20.
19. T. Allahviranloo, A. Panahi, H. Rouhparvar, A Computational Method To Find An Approximate Analytical Solution For Fuzzy Differential Equations, An. S,t. Univ. Ovidius Constant, 17 (1) (2009), 5-14.
20. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338--353. https://doi.org/10.1016/S0019-9958(65)90241-X
21. J. J. Buckley, Y. Qu, Solving fuzzy equations : A new solution concept, Fuzzy Sets and Systems 50 (1992), 1-14. https://doi.org/10.1016/0165-0114(92)90199-E
22. J. H. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci.Numer. Simul. 2(1997), 203--205.
23. T. Allahviranloo, S. Abbasbandy, H. Rouhparvar, The exact solutions of fuzzy wave-like equa-tions with variable coefficients by a variational iteration method, Appl. Soft Comput. 11 (2011), 2186--2192. https://doi.org/10.1016/j.asoc.2010.07.018
24. L. S. Chadli, A. Harir, S. Melliani, Solutions of fuzzy wave-like equations by variational iteration method, Annals of Fuzzy Mathematics and Informatics, 8 (2014), 527-547.
25. J. J. Buckley, T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets andSystems 105 (1999), 241--248. https://doi.org/10.1016/S0165-0114(98)00323-6
26. E. Khdadadi, M. Karabacak, E.Celik, Solving fuzzy Riccati differential equatios by variational iteration method, International Journal of Engineering and Applied Science, 2 (2015), 35-40.