• Title/Summary/Keyword: Frequency tuning

Search Result 693, Processing Time 0.031 seconds

A Study for a Near-Field Microwave Microscope Using a Tuning Fork Distance Control System in liquid Environment (튜닝폭 거리조절 센서를 이용한 근접장 마이크로파 현미경의 수중 측정을 위한 연구)

  • Kim, Song-Hui;Yoo, Hyung-Keun;Babajanyan, Arsen;Kim, Jong-Chul;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.345-353
    • /
    • 2007
  • We have obtained a topographical image nondestructively for a Cu thin film in liquid using a near-field scanning microwave microscope (NSMM), its operating frequency was 3.5 to 5.5 GHz. We have kept a distance of 10 nm between tip and sample using a quartz tuning fork shear force feedback system. As an end of tip was attached to one prong of the quartz tuning fork has a length of 2 mm, the only tip of tuning fork was immersed in water tank. A loss cause by evaporation in water tank is regulated with actuator was connected to a supplementary tank. Moreover, using a revise program of LabView, we could increase the accuracy of a measurement in liquid.

A Low-Power Design of Delta-Sigma Based Digital Frequency Synthesizer for Bio Sensor Networks (의료용 센서 네트워크를 위한 저전력 델타 시그마 디지털 주파수 합성기 설계)

  • Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.193-197
    • /
    • 2017
  • In this paper, we present a low-power delta-sigma based digital frequency synthesizer with high frequency resolution for bio sensor networks. Biomedical radio-frequency (RF) transceivers require miniaturized forms with a long battery life and low power consumption. For the technology scaling, digital circuits have become preferable compared to analog circuits because of the aggressive cost, size, flexibility, and repeatability. Therefore, the digital circuits based on standard-cell library are used to reduce a power consumption. Additionally, a delta-sigma is used for making fractional frequency tuning range. From the simulation, we confirmed that proposed scheme has good performance in accordance with power and frequency resolution.

The Application of Frequency Modulated Quartz Oscillator Using a V.V.C. Diode. (VVC 다이오드를 사용한 수정주파수 변조기의 응용)

  • Jeong, Man-Yeong;Kim, Yeong-Ung;Kim, Byeong-Sik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.5
    • /
    • pp.19-26
    • /
    • 1972
  • A newly developed quartz frequency modulator utili3ing a V. V. C. diode is briefly described. Its electrical characteristics-including modulation linearity, modulation distortion, and carrier frequency stability depending upon the variation of the environmental temperature and the applied power voltage, etc.-are suitable for the modulator of a mobile or a portable F.M. transmitter according to the experimental results. The excellent over-all electrical characteristics were proved from the experimental development of the two kinds of transceivers. One is the single channal transceiver which contains a direct frequency modulator at the carrier frequency of 52.750 MHg. The other is the dual channel transceiver (the frequencies are selected from about 40 channels without tuning adjustment) whose operational frequency is composed of a modulated frequency of 10.7 MHz and the frequency generated at a channel control oscillator, As mentioned above, it is realized that the electrical characteristics of this modulation method are suitable for portable F. M. transceivers.

  • PDF

Experimental Design of the Gunn Diode Mount for W-Band Waveguide Voltage Controlled Oscillator (W-대역 도파관 전압조정발진기를 위한 건 다이오드 마운트의 실험적설계)

  • Min Jae-Yong;Li junwen;Ahn Bierng-Chearl;Roh Jin-Eep;Kim Dong-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.92-101
    • /
    • 2005
  • In this paper, the Gunn diode mount is experimentally designed for use in a W-band waveguide voltage controlled oscillator(VCO). The role of the Gunn diode mount is to match the low impedance of the Gunn diode to the high impedance of waveguide. Computer simulations of VCO characteristics such as center frequency, frequency tuning range, and output power are carried out for various values of disc diameter, disc height, post diameter, and utilized in the experimental optimization of the Gunn diode mount. The designed VCO shows excellent characteristics; 93.9 GHz center fiequency, 600 MHz frequency tuning range with $2{\%}$ linearity, 16 dBm output power.

Design of Multiband Octa-Phase LC VCO for SDR (SDR을 위한 다중밴드 Octa-Phase LC 전압제어 발진기 설계)

  • Lee, Sang-Ho;Han, Byung-Ki;Lee, Jae-Hyuk;Kim, Hyeong-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.7-11
    • /
    • 2007
  • This paper presents a multiband octa-phase LC VCO for SDR receiver. Four identical LC VCOs are connected by using series coupling transistor to obtain the octa-phase signal and low phase noise characteristic. For a multiband application, a band tuning circuit that consists of a switch capacitor circuit and two MOS varactors is proposed. As the MOS switch is on/off state, the frequency range will be varied. In addition, two varactors make the VCO be immune to process variation of the oscillation frequency. The VCO is designed in 0.18-um CMOS technology, consumes 12mA current from 1.8V supply voltage and operates with a frequency band from 885MHz to 1.342GHz (41% tuning range). As driving sub-harmonic mixer, the proposed VCO covers 3 standards(CDMA 2000 1x, WCDMA, WiBro). The measured phase noise is -105dBc@100kHz, -115dBc@1MHz, -130dBc@10MHz for CDMA 2000 1x, WCDMA, WiBro respectively.

A Fully Integrated Ku-band CMOS VCO with Wide Frequency Tuning (Ku-밴드 광대역 CMOS 전압 제어 발진기)

  • Kim, Young Gi;Hwang, Jae Yeon;Yoon, Jong Deok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.83-89
    • /
    • 2014
  • A ku-band complementary cross-coupled differential voltage controlled oscillator is designed, measured and fabricated using $0.18-{\mu}m$ CMOS technology. A 2.4GHz of very wide frequency tuning at oscillating frequency of 14.5GHz is achieved with presented circuit topology and MOS varactors. Measurement results show -1.66dBm output power with 18mA DC current drive from 3.3V power supply. When 5V is applied, the output power is increased to 0.84dBm with 47mA DC current. -74.5dBc/Hz phase noise at 100kHz offset is measured. The die area is $1.02mm{\times}0.66mm$.

Power Consumption Change in Transistor Ratio of Ring Voltage Controlled Oscillator (링 전압 제어 발진기의 트랜지스터 비율에 따른 소모 전력 변화)

  • Moon, Dongwoo;Shin, Hooyoung;Lee, Milim;Kang, Inseong;Lee, Changhyun;Park, Changkun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.212-215
    • /
    • 2016
  • In this paper, a 5.08 GHz Ring Voltage Controlled Oscillator(Ring VCO) was implemented using $0.18{\mu}m$ standard CMOS technology. The proposal Ring VCO is 3-stage structure. This research confirmed that the each stage's different transistor size ratio influence the current change and alter power consumption consequentially. This circuit is formed to control the current thereby adding the Current Mirror and to tune the frequency by supplying control voltage. It has an 65.5 %(1.88~5.45 GHz) tuning range. The measured output power is -0.30 dBm. The phase noise is -87.50 dBc/Hz @1 MHz offset with operating frequency of 5.08 GHz fundamental frequency. The total power consumption of Ring VCO is 31.2 mW with 2.4 V supply voltage.

Design and Fabrication of a Ka-Band Planar Filter to Suppress Spurious of a Mixer (혼합기 불요파 제거를 위한 Ka 대역 평판형 여파기 설계 및 제작)

  • Lee, Man-Hee;Yang, Seong-Sik;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1104-1114
    • /
    • 2008
  • In the output of a mixer, spurious appears with the desired signal, and a filter is necessary to suppress the spurious. In this paper, the planar filter for Ka-band frequency synthesizer was designed and fabricated. In this procedure, the frequency response becomes asymmetric because of discontinuities at the high frequency. Using this, we designed short-end PCLF by using a individual resonator tuning method. The fabricated 5th-order Ka-band pass filter is compared with the result of EM simulation through measurement. The performance agrees with the simulation. Finally spurious suppression was examined through the measurement of output spectrum of the mixer with the filter.

Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

  • Wu, Jong-Cheng;Wang, Yen-Po;Chen, Yi-Hsuan
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.165-188
    • /
    • 2012
  • In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

A CMOS Fractional-N Frequency Synthesizer for DTV Tuners (DTV 튜너를 위한 CMOS Fractional-N 주파수합성기)

  • Ko, Seung-O;Seo, Hee-Teak;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • The Digital TV(DTV) standard has ushered in a new era in TV broadcasting and raised a great demand for DTV tuners. There are many challenges in designing a DTV tuner, of which the most difficult part is the frequency synthesizer. This paper presents the design of a frequency synthesizer for DTV Tuners in a $0.18{\mu}m$ CMOS process. It satisfies the DTV(ATSC) frequency band(54~806MHz). A scheme is proposed to cover the full band using only one VCO. The VCO has been designed to operate at 1.6~3.6GHz band such that the LO pulling effect is minimized, and reliable broadband characteristics have been achieved by reducing the variations of VCO gain and frequency step. The simulation results show that the designed VCO has gains of 59~94MHz(${\pm}$17.7MHz/V,${\pm}$23%) and frequency steps of 26~42.5MHz(${\pm}$8.25MHz/V,${\pm}$24%), and a very wide tuning range of 76.9%. The designed frequency synthesizer has a phase noise of -106dBc/Hz at 100kHz offset, and the lock time is less than $10{\mu}$sec. It consumes 20~23mA from a 1.8V supply, and the chip size including PADs is 2.0mm${\times}$1.8mm.