• Title/Summary/Keyword: Floating gate power supply

Search Result 15, Processing Time 0.03 seconds

Floating Power Supply Based on Bootstrap Operation for Three-Level Neutral-Point-Clamped Voltage-Source Inverter

  • Nguyen, Qui Tu Vo;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.3-4
    • /
    • 2011
  • This paper presents a survey of floating power supply based on bootstrap operation for three-level voltage-source inverters. The floating power supply for upper switches is achieved by the bootstrap capacitor charged during on-time of the switch underneath. Hence, a large number of bulky isolated DC/DC power supplies for each gate driver are reduced. The Pspice simulation results show the behavior of bootstrap devices and the performance of bootstrap capacitor voltage.

  • PDF

Design of Charge Pump Circuit for Floating Gate Power Supply of Intelligent Power Module (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.135-144
    • /
    • 2008
  • A bootstrap circuit is widely used for the floating gate power supply of Intelligent power module (IPM). A bootstrap circuit is simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. And the value of the bootstrap capacitor should be increased as the switching frequency decreases. A charge pump circuit can be used to overcome the problems. This paper deals with an analysis and design of a charge pump circuit for the floating gate power supply of an IPM. The simulation and experiment are carried out for an induction motor drive system. The results well verifies the validity of the proposed circuit and design method.

A Study on Gate driver with Boot-strap chain to Drive Multi-level PDP Driver Application (Multi-level PDP 구동회로를 위한 Gate driver의 Boot-strap chain에 관한 연구)

  • Nam, Won-Seok;Hong, Sung-Soo;SaKong, Suk-Chin;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the driver board can be reduced.

Design of Charge Pump Circuit for Intelligent Power Module of Floating Gate Power Supply (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Kim, Seok-Hwan;Seo, Eun-Kyung;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.421-423
    • /
    • 2005
  • A bootstrap circuit for floating power supply has the advantage of being simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. Hence, this paper deals with a design of charge pump circuit for a floating gate power supply of an IPM. The operation of the proposed circuit applied by three-phase inverter system for driving induction motor are verified through the experiments.

  • PDF

Numerical Analyses on Snapback-Free Shorted-Anode SOI LIGBT by using a Floating Electrode and an Auxiliary Gate (플로우팅 전극과 보조 게이트를 이용하여 스냅백을 없앤 애노드 단락 SOI LIGBT의 수치 해석)

  • O, Jae-Geun;Kim, Du-Yeong;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.73-77
    • /
    • 2000
  • A dual-gate SOI SA-LIGBT (shorted-anode lateral insulated gate bipolar transistor) which eliminates the snapback effectively is proposed and verified by numerical simulation. The elimination of the snapback in I-V characteristics is obtained by initiating the hole injection at low anode voltage by employing a dual gate and a floating electrode in the proposed device. For the proposed device, the snapback phenomenon is completely eliminate, while snapback of conventional SA-LIGBT occurs at anode voltage of 11 V. Also, the drive signals of two gates have same polarity by employing the floating electrode, thereby requiring no additional power supply.

  • PDF

A Gate Drive IC for Power Modules with Shoot-through Immunity (상단락 방지용 모듈을 구동하기 위한 게이트 구동 IC)

  • Seo, Dae-Won;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.580-583
    • /
    • 2009
  • This paper introduces a gate drive IC for power modules with shoot-through immunity. A new approach uses a bootstrap diode as a high-side voltage bias and a level shift function at the same time. Therefore, the gate drive circuit becomes a simple and low-cost without conventional level shift functions such as HVIC(High-Voltage IC), optocoupler and transformer. The proposed gate drive IC is designed and fabricated using the Dongbu-Hitek's 0.35um BD350BA process. It has been tested and verified with IGBT modules.

A Gate Drive IC for Power Modules with Shoot-Through Immunity (상단락 방지용 모듈을 구동하기 위한 게이트 구동 IC)

  • Seo, Dae-Won;Kim, Jun-Sik;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.81-82
    • /
    • 2009
  • This paper introduces a gate drive IC for power modules with shoot-through immunity. A new approach uses a bootstrap diode as a high-side voltage bias and a level shift function at the same time. Therefore, the gate drive circuit becomes a simple and low-cost without conventional level shift functions such as HVIC(High-Voltage IC), optocoupler and transformer. The proposed gate drive IC is designed and fabricated using the Dongbu-Hitek's 0.35um BD350BA process. It has been tested and verified with IGBT modules.

  • PDF

A floating resistor with positive and negative resistance operating at lower supply voltages

  • Tantry, Shashidhar;Oura, Takao;Yoneyama, Teru;Asai, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.325-328
    • /
    • 2002
  • In this paper. we propose a floating resistor with positive and negative resistance operating at lower supply voltages. The circuit uses only two transistors between the supply voltages. which enable to operate it at low supply voltages. Moreover. the circuit uses fewer number of transistors compared to the reported work. The gate terminal is used in this circuit for the current addition/subraction at the terminals of resistor. The characteristic of the proposed circuit is verified using HSPICE for the power supply +/-1.5V.

  • PDF

A study on gate driver with Boot-strap chain to drive Multi-level PDP driver application (Multi-level을 사용한 PDP 구동회로를 위한 Gate driver 의 Boot-strap chain 에 관한 연구)

  • Nam, Won-Seok;Kim, Jun-Hyoung;Song, Suk-Ho;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Suk-Chin
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.99-101
    • /
    • 2005
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the drivel board can be reduced.

  • PDF

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.