• Title/Summary/Keyword: FinFET(fin field effect transistor)

Search Result 19, Processing Time 0.027 seconds

Modeling of Nano-scale FET(Field Effect Transistor : FinFET) (나노-스케일 전계 효과 트랜지스터 모델링 연구 : FinFET)

  • Kim, Ki-Dong;Kwon, Oh-Seob;Seo, Ji-Hyun;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • We performed two-dimensional (20) computer-based modeling and simulation of FinFET by solving the coupled Poisson-Schrodinger equations quantum-mechanically in a self-consistent manner. The simulation results are carefully investigated for FinFET with gate length(Lg) varying from 10 to 80nm and with a Si-fin thickness($T_{fin}$) varying from 10 to 40nm. Current-voltage (I-V) characteristics are compared with the experimental data. Device optimization has been performed in order to suppress the short-channel effects (SCEs) including the sub-threshold swing, threshold voltage roll-off, drain induced barrier lowering (DIBL). The quantum-mechanical simulation is compared with the classical appmach in order to understand the influence of the electron confinement effect. Simulation results indicated that the FinFET is a promising structure to suppress the SCEs and the quantum-mechanical simulation is essential for applying nano-scale device structure.

Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion (비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작)

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF

Analysis of Subthreshold Behavior of FinFET using Taurus

  • Murugan, Balasubramanian;Saha, Samar K.;Venkat, Rama
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • This paper investigates the subthreshold behavior of Fin Field Effect Transistor (FinFET). The FinFET is considered to be an alternate MOSFET structure for the deep sub-micron regime, having excellent device characteristics. As the channel length decreases, the study of subthreshold behavior of the device becomes critically important for successful design and implementation of digital circuits. An accurate analysis of subthreshold behavior of FinFET was done by simulating the device in a 3D process and device simulator, Taurus. The subthreshold behavior of FinFET, was measured using a parameter called S-factor which was obtained from the $In(I_{DS})\;-\;V_{GS}$ characteristics. The value of S-factor of devices of various fin dimensions with channel length $L_g$ in the range of 20 nm - 50 nm and with the fin width $T_{fin}$ in the range of 10 nm - 40 nm was calculated. It was observed that for devices with longer channel lengths, the value of S-factor was close to the ideal value of 60 m V/dec. The S-factor increases exponentially for channel lengths, $L_g\;<\;1.5\;T_{fin}$. Further, for a constant $L_g$, the S factor was observed to increase with $T_{fin}$. An empirical relationship between S, $L_g$ and $T_{fin}$ was developed based on the simulation results, which could be used as a rule of thumb for determining the S-factor of devices.

Fabrication of SOI FinFET Devices using Arsenic Solid-phase-diffusion

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.394-398
    • /
    • 2007
  • A simple doping method to fabricate a very thin channel body of the nano-scaled n-type fin field-effect-transistor (FinFET) by arsenic solid-Phase-diffusion (SPD) process is presented. Using the As-doped spin-on-glass films and the rapid thermal annealing for shallow junction, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. The n-type FinFET devices with a gate length of 20-100 nm were fabricated by As-SPD and revealed superior device scalability.

Random Forest Model for Silicon-to-SPICE Gap and FinFET Design Attribute Identification

  • Won, Hyosig;Shimazu, Katsuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.358-365
    • /
    • 2016
  • We propose a novel application of random forest, a machine learning-based general classification algorithm, to analyze the influence of design attributes on the silicon-to-SPICE (S2S) gap. To improve modeling accuracy, we introduce magnification of learning data as well as randomization for the counting of design attributes to be used for each tree in the forest. From the automatically generated decision trees, we can extract the so-called importance and impact indices, which identify the most significant design attributes determining the S2S gap. We apply the proposed method to actual silicon data, and observe that the identified design attributes show a clear trend in the S2S gap. We finally unveil 10nm key fin-shaped field effect transistor (FinFET) structures that result in a large S2S gap using the measurement data from 10nm test vehicles specialized for model-hardware correlation.

5-bit FLASH A/D Converter Employing Time-interpolation Technique (시간-보간법을 활용한 5-bit FLASH ADC)

  • Nam, Jae-Won;Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.124-129
    • /
    • 2021
  • A time-interpolation technique has been applied to the conventional FLASH analog-to-digital converter (ADC) to increase a number of quantization level, thus it reduces not only a power dissipation, but also minimize an active chip area. In this work, we demonstrated 5-bit ADC which has 31 quantization levels consisting of 16 conventional voltage-mode comparators and 15 time-mode comparators. As a result, we have achieved about 48.4% voltage-mode comparator reductions. The ADC is fabricated in a 14nm fin Field-effect transistor (FinFET) process with an active die area of 0.0024 mm2 while consuming 0.82 mW through a 0.8 V supply. At 400-MS/s conversion rate, the ADC performs 28.03 dB SNDR (4.36 ENOB) at 21MHz input frequency.

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

Research for Hot Carrier Degradation in N-Type Bulk FinFETs

  • Park, Jinsu;Showdhury, Sanchari;Yoon, Geonju;Kim, Jaemin;Kwon, Keewon;Bae, Sangwoo;Kim, Jinseok;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.169-172
    • /
    • 2020
  • In this paper, the effect of hot carrier injection on an n-bulk fin field-effect transistor (FinFET) is analyzed. The hot carrier injection method is applied to determine the performance change after injection in two ways, channel hot electron (CHE) and drain avalanche hot carrier (DAHC), which have the greatest effect at room temperature. The optimum condition for CHE injection is VG=VD, and the optimal condition for DAHC injection can be indirectly confirmed by measuring the peak value of the substrate current. Deterioration by DAHC injection affects not only hot electrons formed by impact ionization, but also hot holes, which has a greater impact on reliability than CHE. Further, we test the amount of drain voltage that can be withstood, and extracted the lifetime of the device. Under CHE injection conditions, the drain voltage was able to maintain a lifetime of more than 10 years at a maximum of 1.25 V, while DAHC was able to achieve a lifetime exceeding 10 years at a 1.05-V drain voltage, which is 0.2 V lower than that of CHE injection conditions.