• 제목/요약/키워드: Ferroelectric capacitor

검색결과 145건 처리시간 0.025초

강유전성 스위칭 소자의 등가회로 모델과 특성 시뮬레이션 (Equivalent Circuit Modeling and Characteristics Simulation of Ferroelectric Switching Devices)

  • 김진홍;홍성진;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1506-1508
    • /
    • 2001
  • We have investigated for the modeling and the simulation of the ferroelectric capacitor and MFS TFT (Metal-Ferroelectric-Semiconductor Thin Film transistor). For ferroelectric capacitor modeling, we adopted the equivalent circuit model which consists of a nonlear capacitor, a nonliner resistor, and a linear capacitor. MFS TFT have been modeled by combining the ferroelectric capacitor and Bsim3 MOSFET model. Our simulations show the characteristics of ferroelectric capacitor and MFS TFT.

  • PDF

Feasibility of ferroelectric materials as a blocking layer in charge trap flash (CTF) memory

  • Zhang, Yong-Jie;An, Ho-Myoung;Kim, Hee-Dong;Nam, Ki-Hyun;Seo, Yu-Jeong;Kim, Tae-Geun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.119-119
    • /
    • 2008
  • The electrical characteristics of Metal-Ferroelectric-Nitride-Oxide-Silicon (MFNOS) structure is studied and compared to the conventional Silicon-Oixde-Nitride-Oxide-Silicon (SONOS) capacitor. The ferroelectric blocking layer is SrBiNbO (SBN with Sr/Bi ratio 1-x/2+x) with the thickness of 200 nm and is fabricated by the RF sputter. The memory windows of MFNOS and SONOS capacitors with sweep voltage from +10 V to -10 V are 6.9 V and 5.9 V, respectively. The effect of ferroelectric blocking layer and charge trapping on the memory window was discussed. The retention of MFNOS capacitor also shows the 10-years and longer retention time than that of the SONOS capacitor. The better retention properties of the MFNOS capacitor may be attributed to the charge holding effect by the polarization of ferroelectric layer.

  • PDF

Recent Development in Polymer Ferroelectric Field Effect Transistor Memory

  • Park, Youn-Jung;Jeong, Hee-June;Chang, Ji-Youn;Kang, Seok-Ju;Park, Cheol-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.51-65
    • /
    • 2008
  • The article presents the recent research development in polymer ferroelectric non-volatile memory. A brief overview is given of the history of ferroelectric memory and device architectures based on inorganic ferroelectric materials. Particular emphasis is made on device elements such as metal/ferroelectric/metal type capacitor, metal-ferroelectric-insulator-semiconductor (MFIS) and ferroelectric field effect transistor (FeFET) with ferroelectric poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (TrFE). In addition, various material and process issues for realization of polymer ferroelectric non-volatile memory are discussed, including the control of crystal polymorphs, film thickness, crystallization and crystal orientation and the unconventional patterning techniques.

Tunable RF 기기 적용을 위한 ALD-HfO2의 마이크로파 대역 강유전체 특성 고찰 (Study on the Ferroelectric Properties of ALD-HfO2 in Microwave Band for Tunable RF Apparatus)

  • 한상우;이창현;이정해;차호영
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.780-785
    • /
    • 2018
  • 본 논문에서는 tunable RF 기기에 적용이 가능한 $HfO_2$ 강유전체를 활용하여 metal-ferroelectric-metal (MFM) 커패시터를 구현하였으며 마이크로파 대역주파수 까지 전압에 따른 커패시턴스 tunability 특성을 고찰 하였다. 1kHz부터 5GHz 대역에 이르기까지 광범위한 범위의 커패시턴스-전압 특성을 분석하였으며 커패시턴스 tunability는 500 MHz 이상의 주파수에서 2.5 GHz 대역까지 ~3 %의 tunability가 유지되는 것을 확인 하여 마이크로파 주파수 대역에서 ALD $HfO_2$기반 전자 제어 가변 커패시터의 사용 가능성을 입증하였다.

초박막 폴리머 강유전체 박막의 특성 (Characteristics of Ultra-thin Polymer Ferroelectric Films)

  • 김광호
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.84-87
    • /
    • 2020
  • The properties of ultra-thin two-dimensional (2D) organic ferroelectric Langmuir-Blodgett (LB) films of the poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] were investigated to find possible applicability in flexible and wearable electronics applications. In the C-V characteristics of the MFM capacitor of 2-monolayer of 5 nm films, a butterfly hysteresis curve due to the ferroelectricity of P(VDF-TrFE) was confirmed. Typical residual polarization value was measured at 2μC/㎠. When the MFM capacitor with ultra-thin ferroelectric film was measured by applying a 10 Hz bipolar pulse, it was shown that 65% of the initial polarization value in 105 cycles deteriorated the polarization. The leakage current density of the 2-monolayer film was maintained at about 5 × 10-8 A/㎠ for the case at a 5MV/cm electric field. The resistivity of the 2-monolayer film in the case at an electric field at 5 MV/cm was more than 2.35 × 1013 Ω·cm.

P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터 (Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material)

  • 한상우;차호영
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.209-212
    • /
    • 2018
  • 본 논문에서는 P(VDF-TrFE)유기물 강유전체 기반 metal-ferroelectric-metal (MFM) capacitor 와 차세대 반도체 물질인 질화갈륨 반도체를 활용한 네거티브 커패시턴스 전계효과 트랜지스터를 제작 및 분석 하였다. 27 nm의 두께의 P(VDF-TrFE) MFM 커패시터의 분극지수는 4 MV/cm에서 $6{\mu}C/cm^2$ 값을 나타내었으며 약 65 ~ 95 pF의 커패시턴스 값을 나타내었다. 강유전체의 커패시턴스와 전계효과 트랜지스터의 커패시턴스 매칭을 분석하기 위해 제작된 P(VDF-TrFE) MFM 커패시터는 GaN 전계효과 트랜지스터의 게이트 전극에 집적화 되었으며 집적화되기 전 104 mV/dec 의 문턱전압 이하 기울기에서 82 mV/dec 값으로 개선된 효과를 보였다.

PZT 박막 캐패시터의 2차 고조파 전류특성 (The Second Harmonic Current Characteristic of PZT Thin Film Capacitor)

  • 김동철;박봉태;고중혁;문병무
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.596-600
    • /
    • 1998
  • A method for the nondestructive read-out of the memory in ferroelectric thin films is demonstrated using the detection second harmonic currents introduced in the ferrolelectric capacitor as a response to an ac signal. The sign and phase of the second harmonic current depends on the polarized state +$P_r or -P_r$, The studied ferroelectric PZT thin film is found to have desirable features for the use as a memory element. This method and material seems as a promising approach for the nonvolatile memory storage.

  • PDF

Nanoscale Probing of Ferroelectric Domain Switching Using Piezoresponse Force Microscopy

  • Yang, Sang Mo;Kim, Yunseok
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.340-349
    • /
    • 2019
  • In ferroelectric materials, piezoresponse force microscopy (PFM) has been widely used to explore ferroelectric domain switching. In this article, we review the fundamentals of nanoscale probing of ferroelectric domain switching using PFM, including the basic principles of PFM and a variety of PFM studies on local domain switching. We also introduce advanced PFM techniques for exploring switching behavior. Finally, we discuss several issues and perspectives in nanoscale probing of ferroelectric domain switching using PFM. PFM has played an important role in exploring switching behavior in ferroelectric materials, and it could be further developed to probe more detailed switching information.

High Security FeRAM-Based EPC C1G2 UHF (860 MHz-960 MHz) Passive RFID Tag Chip

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Song, Yong-Wook;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong;Lee, Jong-Wook
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.826-832
    • /
    • 2008
  • The metal-ferroelectric-metal (MFM) capacitor in the ferroelectric random access memory (FeRAM) embedded RFID chip is used in both the memory cell region and the peripheral analog and digital circuit area for capacitance parameter control. The capacitance value of the MFM capacitor is about 30 times larger than that of conventional capacitors, such as the poly-insulator-poly (PIP) capacitor and the metal-insulator-metal (MIM) capacitor. An MFM capacitor directly stacked over the analog and memory circuit region can share the layout area with the circuit region; thus, the chip size can be reduced by about 60%. The energy transformation efficiency using the MFM scheme is higher than that of the PIP scheme in RFID chips. The radio frequency operational signal properties using circuits with MFM capacitors are almost the same as or better than with PIP, MIM, and MOS capacitors. For the default value specification requirement, the default set cell is designed with an additional dummy cell.

  • PDF

잉크젯 프린팅 공정을 통해 제작된 BaTiO3 Capacitor의 유전특성 분석 (Dielectric Property Analysis of BaTiO3 Capacitor Manufactured by Inkjet Printing Process)

  • 김유진;이경영;이인곤;홍익표;김지훈
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.610-615
    • /
    • 2022
  • BaTiO3 is one of the ferroelectric materials with excellent dielectric properties such as high dielectric constant, low dielectric loss, and is widely used for the manufacturing of capacitors, piezoelectric converters, microsensors, and ferroelectric memories. Inkjet printing is a technology which uses digital and contactless methods which significantly improves flexibility associated with material and structural design, reducing manufacturing costs. Therefore, the top and bottom electrodes, BaTiO3 ink, and photocurable resin were all printed by an inkjet to produce a BaTiO3 capacitor. The properties of the printed thin film were analyzed. It was confirmed that the photocurable resin ink was well-infiltrated between the BaTiO3 powder particles printed by inkjet. The dielectric properties of the capacitor such as dielectric constant which varies in accordance with frequency, polarization and tunability that changes with voltage, were measured.