DOI QR코드

DOI QR Code

Nanoscale Probing of Ferroelectric Domain Switching Using Piezoresponse Force Microscopy

  • Yang, Sang Mo (Department of Physics, Sookmyung Women's University) ;
  • Kim, Yunseok (School of Advanced Materials and Engineering, Sungkyunkwan University)
  • Received : 2019.06.21
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

In ferroelectric materials, piezoresponse force microscopy (PFM) has been widely used to explore ferroelectric domain switching. In this article, we review the fundamentals of nanoscale probing of ferroelectric domain switching using PFM, including the basic principles of PFM and a variety of PFM studies on local domain switching. We also introduce advanced PFM techniques for exploring switching behavior. Finally, we discuss several issues and perspectives in nanoscale probing of ferroelectric domain switching using PFM. PFM has played an important role in exploring switching behavior in ferroelectric materials, and it could be further developed to probe more detailed switching information.

Keywords

References

  1. S. Jesse, B. J. Rodriguez, S. Choudhury, A. P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E. A. Eliseev, A. N. Morozovska, J. Zhang, L. Q. Chen, and S. V. Kalinin, "Direct Imaging of the Spatial and Energy Distribution of Nucleation Centres in Ferroelectric Materials," Nat. Matter., 7 [3] 209-15 (2008). https://doi.org/10.1038/nmat2114
  2. Y. Kim, A. Kumar, O. Ovchinnikov, S. Jesse, H. Han, D. Pantel, I. Vrejoiu, W. Lee, D. Hesse, M. Alexe, and S. V. Kalinin, "First-Order Reversal Curve Probing of Spatially Resolved Polarization Switching Dynamics in Ferroelectric Nanocapacitors," ACS Nano, 6 [1] 491-500 (2012). https://doi.org/10.1021/nn203831h
  3. Y. Kim, H. Han, I. Vrejoiu, W. Lee, D. Hesse, and M. Alexe, "Origins of domain wall pinning in ferroelectric nanocapacitors," Nano Convergence, 1 [1] 24 (2014). https://doi.org/10.1186/s40580-014-0024-4
  4. M. Alexe and A. Gruverman, Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach; Springer, New York, 2004.
  5. A. Gruverman, "Nanoscale Insight into the Statics and Dynamics of Polarization Behavior in Thin Film Ferroelectric Capacitors," J. Mater. Sci., 44 [19] 5182-88 (2009). https://doi.org/10.1007/s10853-009-3623-4
  6. A. Gruverman, O. Auciello, and H. Tokumoto, "Imaging and Control of Domain Structures in Ferroelectric Thin Films via Scanning Force Microscopy," Annu. Rev. Mater. Sci., 28 101-23 (1998). https://doi.org/10.1146/annurev.matsci.28.1.101
  7. S. V. Kalinin and D. A. Bonnell, "Imaging Mechanism of Piezoresponse Force Microscopy of Ferroelectric Surfaces," Phys. Rev. B, 65 [12] 125408 (2002). https://doi.org/10.1103/physrevb.65.125408
  8. S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, E. L. Colla, N. Setter, E. Kim, and K. No, "Principle of Ferroelectric Domain Imaging Using Atomic Force Microscope," J. Appl. Phys., 89 [2] 1377-86 (2001). https://doi.org/10.1063/1.1331654
  9. J. B. Lim, S. J. Zhang, J. H. Jeon, and T. R. Shrout, "(K,Na)$NbO_3$-Based Ceramics for Piezoelectric 'Hard' Lead-Free Materials," J. Am. Ceram. Soc., 93 [5] 1218-20 (2010).
  10. D. Seol, B. Kim, and Y. Kim, "Non-Piezoelectric Effects in Piezoresponse Force Microscopy," Curr. Appl. Phys., 17 [5] 661-74 (2017). https://doi.org/10.1016/j.cap.2016.12.012
  11. S. Jesse, A. Kumar, T. M. Arruda, Y. Kim, S. V. Kalinin, and F. Ciucci, "Electrochemical Strain Microscopy: Probing Ionic and Electrochemical Phenomena in Solids at the Nanometer Level," MRS Bull., 37 [7] 651-58 (2012). https://doi.org/10.1557/mrs.2012.144
  12. D. Seol, A. Jeong, M. H. Han, S. Seo, T. S. Yoo, W. S. Choi, H. S. Jung, H. Shin, and Y. Kim, "Origin of Hysteresis in $CH_3NH_3PbI_3$ Perovskite Thin Films," Adv. Funct. Mater., 27 [37] 1701924 (2017). https://doi.org/10.1002/adfm.201701924
  13. Y. Kim, A. Kumar, A. Tselev, I. I. Kravchenko, H. Han, I. Vrejoiu, W. Lee, D. Hesse, M. Alexe, S. V. Kalinin, and S. Jesset, "Nonlinear Phenomena in Multiferroic Nanocapacitors: Joule Heating and Electromechanical Effects," ACS Nano, 5 [11] 9104-12 (2011). https://doi.org/10.1021/nn203342v
  14. S. Kim, D. Seol, X. L. Lu, M. Alexe, and Y. Kim, "Electrostatic-free Piezoresponse Force Microscopy," Sci. Rep., 7 41657 (2017). https://doi.org/10.1038/srep41657
  15. N. Balke, P. Maksymovych, S. Jesse, A. Herklotz, A. Tselev, C.-B. Eom, I. I. Kravchenko, P. Yu, and S. V. Kalinin, "Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy," ACS Nano, 9 [6] 6484-92 (2015). https://doi.org/10.1021/acsnano.5b02227
  16. N. Balke, P. Maksymovych, S. Jesse, I. I. Kravchenko, Q. Li, and S. V. Kalinin, "Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity," ACS Nano, 8 [10] 10229-36 (2014). https://doi.org/10.1021/nn505176a
  17. A. Kumar, F. Ciucci, A.N. Morozovska, S. V. Kalinin, and S. Jesse, "Measuring Oxygen Reduction/Evolution Reactions on the Nanoscale," Nat. Chem., 3 [9] 707-13 (2011). https://doi.org/10.1038/nchem.1112
  18. N. Balke, S. Jesse, A. N. Morozovska, E. A. Eliseev, D. W. Chung, Y. Kim, L. Adamczyk, R. E. Garcia, N. Dudney, and S. V. Kalinin, "Nanoscale Mapping of Ion Diffusion in a Lithium-Ion Battery Cathode," Nat. Nanotechnol., 5 [10] 749-54 (2010). https://doi.org/10.1038/nnano.2010.174
  19. S. M. Yang, M. Baris Okatan, M. Parans Paranthaman, S. Jesse, T. W. Noh, and S. V. Kalinin, "Second Harmonic Detection in the Electrochemical Strain Microscopy of Ag-Ion Conducting Glass," Appl. Phys. Lett., 105 [19] 193106 (2014). https://doi.org/10.1063/1.4901736
  20. S. M. Yang, S. Lee, J. Jian, W. Zhang, P. Lu, Q. Jia, H. Wang, T. W. Noh, S. V. Kalinin, and J. L. MacManus-Driscoll, "Strongly Enhanced Oxygen Ion Transport through Samarium-doped $CeO_2$ Nanopillars in Nanocomposite Films," Nat. Commun., 6 8588 (2015). https://doi.org/10.1038/ncomms9588
  21. D. Seol, S. Park, O. V. Varenyk, S. Lee, H. N. Lee, A. N. Morozovska, and Y. Kim, "Determination of Ferroelectric Contributions to Electromechanical Response by Frequency Dependent Piezoresponse Force Microscopy," Sci. Rep., 6 30579 (2016). https://doi.org/10.1038/srep30579
  22. S. M. Yang, A. N. Morozovska, R. Kumar, E. A. Eliseev, Y. Cao, L. Mazet, N. Balke, S. Jesse, R. K. Vasudevan, C. Dubourdieu, and S. V. Kalinin, "Mixed Electrochemical-Ferroelectric States in Nanoscale Ferroelectrics," Nat. Phys., 13 812-18 (2017). https://doi.org/10.1038/nphys4103
  23. Y. Kim, W. Kim, H. Choi, S. Hong, H. Ko, H. Lee, and K. No, "Nanoscale Domain Growth Dynamics of Ferroelectric Poly(Vinylidene Fluoride-Co-Trifluoroethylene) Thin Films," Appl. Phys. Lett., 96 [1] 012908 (2010). https://doi.org/10.1063/1.3290247
  24. Y. Kim, Y. Cho, S. Hong, S. Buhlmann, H. Park, D. K. Min, S. H. Kim, and K. No, "Correlation between Grain Size and Domain Size Distributions in Ferroelectric Media for Probe Storage Applications," Appl. Phys. Lett., 89 [16] 162907 (2006). https://doi.org/10.1063/1.2363942
  25. V. Y. Shur, A. V. Ievlev, E. V. Nikolaeva, E. I. Shishkin, and M. M. Neradovskiy, "Influence of Adsorbed Surface Layer on Domain Growth in the Field Produced by Conductive Tip of Scanning Probe Microscope in Lithium Niobate," J. Appl. Phys., 110 [5] 052017 (2011). https://doi.org/10.1063/1.3624798
  26. Y. C. Chen, Q. R. Lin, and Y. H. Chu, "Domain Growth Dynamics in Single-Domain-like $BiFeO_3$ Thin Films," Appl. Phys. Lett., 94 [12] 122908 (2009). https://doi.org/10.1063/1.3109779
  27. Y. Kim, I. Vrejoiu, D. Hesse, and M. Alexe, "Reversible Plasma Switching in Epitaxial $BiFeO_3$ Thin Films," Appl. Phys. Lett., 96 [20] 202902 (2010). https://doi.org/10.1063/1.3431585
  28. K. W. Park, H. Seo, J. Kim, D. Seol, J. Hong, and Y. Kim, "Humidity Effect of Domain Wall Roughening Behavior in Ferroelectric Copolymer Thin Films," Nanotechnology, 25 [35] 355703 (2014). https://doi.org/10.1088/0957-4484/25/35/355703
  29. R. V. Wang, D. D. Fong, F. Jiang, M. J. Highland, P. H. Fuoss, C. Thompson, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, A. M. Rappe, and G. B. Stephenson, "Reversible Chemical Switching of a Ferroelectric Film," Phys. Rev. Lett., 102 [4] 047601 (2009). https://doi.org/10.1103/PhysRevLett.102.047601
  30. D. Dahan, M. Molotskii, G. Rosenman, and Y. Rosenwaks, "Ferroelectric Domain inversion: The Role of Humidity," Appl. Phys. Lett., 89 [15] 152902 (2006). https://doi.org/10.1063/1.2358855
  31. R. Nath, Y.-H. Chu, N. A. Polomoff, R. Ramesh, and B. D. Huey, "High Speed Piezoresponse Force Microscopy: < 1 Frame per Second Nanoscale Imaging," Appl. Phys. Lett., 93 [7] 072905-3 (2008). https://doi.org/10.1063/1.2969045
  32. S. M. Yang, J. Y. Jo, D. J. Kim, H. Sung, T. W. Noh, H. N. Lee, J. G. Yoon, and T. K. Song, "Domain Wall Motion in Epitaxial $Pb(Zr,Ti)O_3$ Capacitors Investigated by Modified Piezoresponse Force Microscopy," Appl. Phys. Lett., 92 [25] 252901-3 (2008). https://doi.org/10.1063/1.2949078
  33. D. J. Kim, J. Y. Jo, T. H. Kim, S. M. Yang, B. Chen, Y. S. Kim, and T. W. Noh, "Observation of Inhomogeneous Domain Nucleation in Epitaxial $Pb(Zr,Ti)O_3$ Capacitors," Appl. Phys. Lett., 91 [13] 132903-3 (2007). https://doi.org/10.1063/1.2790485
  34. A. Gruverman, B. J. Rodriguez, C. Dehoff, J. D. Waldrep, A. I. Kingon, R. J. Nemanich, and J. S. Cross, "Direct Studies of Domain Switching Dynamics in Thin Film Ferroelectric Capacitors," Appl. Phys. Lett., 87 [8] 082902-3 (2005). https://doi.org/10.1063/1.2010605
  35. D. J. Kim, J. Y. Jo, Y. S. Kim, and T. K. Song, "Inhomogeneous Domain Nucleation and Growth in Disordered Ferroelectric Capacitors Observed by Modified Piezoresponse Force Microscopy," J. Phys. D Appl. Phys., 43 [39] 395403 (2010). https://doi.org/10.1088/0022-3727/43/39/395403
  36. A. Gruverman, D. Wu, and J. F. Scott, "Piezoresponse Force Microscopy Studies of Switching Behavior of Ferroelectric Capacitors on a 100-ns Time Scale," Phys. Rev. Lett., 100 [9] 097601 (2008). https://doi.org/10.1103/PhysRevLett.100.097601
  37. P. Buragohain, C. Richter, T. Schenk, H. Lu, T. Mikolajick, U. Schroeder, and A. Gruverman, "Nanoscopic Studies of Domain Structure Dynamics in Ferroelectric $La:HfO_2$ Capacitors," Appl. Phys. Lett., 112 [22] 222901 (2018). https://doi.org/10.1063/1.5030562
  38. J. Y. Jo, S. M. Yang, T. H. Kim, H. N. Lee, J. G. Yoon, S. Park, Y. Jo, M. H. Jung, and T. W. Noh, "Nonlinear Dynamics of Domain-Wall Propagation in Epitaxial Ferroelectric Thin Films," Phys. Rev. Lett., 102 [4] 045701 (2009). https://doi.org/10.1103/PhysRevLett.102.045701
  39. S. M. Yang, J. W. Heo, H. N. Lee, T. K. Song, and J. G. Yoon, "Quantitative Analysis of the Nucleation and Growth of Ferroelectric Domains in Epitaxial $Pb(Zr,Ti)O_3$ Thin Films," J. Korean Phys. Soc., 55 820-24 (2009). https://doi.org/10.3938/jkps.55.820
  40. T. H. Kim, S. H. Baek, S. M. Yang, S. Y. Jang, D. Ortiz, T. K. Song, J. S. Chung, C. B. Eom, T. W. Noh, and J. G. Yoon, "Electric-Field-Controlled Directional Motion of Ferroelectric Domain Walls in Multiferroic $BiFeO_3$ Films," Appl. Phys. Lett., 95 [26] 262902-3 (2009). https://doi.org/10.1063/1.3275736
  41. S. M. Yang, T. H. Kim, J.-G. Yoon, and T. W. Noh, "Nanoscale Observation of Time-Dependent Domain Wall Pinning as the Origin of Polarization Fatigue," Adv. Funct. Mater., 22 [11] 2310-17 (2012). https://doi.org/10.1002/adfm.201102685
  42. S. V. Kalinin, B. J. Rodriguez, S. H. Kim, S. K. Hong, A. Gruverman, and E. A. Eliseev, "Imaging Mechanism of Piezoresponse Force Microscopy in Capacitor Structures," Appl. Phys. Lett., 92 [15] 152906 (2008). https://doi.org/10.1063/1.2905266
  43. S. M. Yang, J.-G. Yoon, and T. W. Noh, "Nanoscale Studies of Defect-Mediated Polarization Switching Dynamics in Ferroelectric Thin Film Capacitors," Curr. Appl. Phys., 11 [5] 1111-25 (2011). https://doi.org/10.1016/j.cap.2011.05.017
  44. Y. Kim, H. Han, W. Lee, S. Baik, D. Hesse, and M. Alexe, "Non-Kolmogorov-Avrami-Ishibashi Switching Dynamics in Nanoscale Ferroelectric Capacitors," Nano Lett., 10 [4] 1266-70 (2010). https://doi.org/10.1021/nl9038339
  45. Y. Kim, H. Han, B. J. Rodriguez, I. Vrejoiu, W. Lee, S. Baik, D. Hesse, and M. Alexe, "Individual Switching of Film-based Nanoscale Epitaxial Ferroelectric Capacitors," J. Appl. Phys., 108 [4] 042005 (2010). https://doi.org/10.1063/1.3474960
  46. Y. Kim, H. Han, I. Vrejoiu, W. Lee, D. Hesse, and M. Alexe, "Cross Talk by Extensive Domain Wall Motion in Arrays of Ferroelectric Nanocapacitors," Appl. Phys. Lett., 99 [20] 202901 (2011). https://doi.org/10.1063/1.3661166
  47. Y. Ishibashi and Y. Takagi, "Note on Ferroelectric Domain Switching," J. Phys. Soc. Jpn, 31 [2] 506-10 (1971). https://doi.org/10.1143/JPSJ.31.506
  48. M. Avrami, "Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei," J. Chem. Phys., 8 [2] 212-24 (1940). https://doi.org/10.1063/1.1750631
  49. S. Jesse, S. Guo, A. Kumar, B. J. Rodriguez, R. Proksch, and S. V. Kalinin, "Resolution Theory, and Static and Frequency-Dependent Cross-Talk in Piezoresponse Force Microscopy," Nanotechnology, 21 [40] 405703 (2010). https://doi.org/10.1088/0957-4484/21/40/405703
  50. S. Jesse and S. V. Kalinin, "Band Excitation in Scanning Probe Microscopy: Sines of Change," J. Phys. D: Appl. Phys., 44 [46] 464006 (2011). https://doi.org/10.1088/0022-3727/44/46/464006
  51. S. M. Yang, L. Mazet, M. B. Okatan, S. Jesse, G. Niu, T. Schroeder, S. Schamm-Chardon, C. Dubourdieu, A. P. Baddorf, and S. V. Kalinin, "Decoupling Indirect Topographic Cross-Talk in Band Excitation Piezoresponse Force Microscopy Imaging and Spectroscopy," Appl. Phys. Lett., 108 [25] 252902 (2016). https://doi.org/10.1063/1.4954276
  52. S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, "The Band Excitation Method in Scanning Probe Microscopy for Rapid Mapping of Energy Dissipation on the Nanoscale," Nanotechnology, 18 [43] 435503 (2007). https://doi.org/10.1088/0957-4484/18/43/435503
  53. B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, "Dual-Frequency Resonance-Tracking Atomic Force Microscopy," Nanotechnology, 18 [47] 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504
  54. S. Jesse, R. K. Vasudevan, L. Collins, E. Strelcov, M. B. Okatan, A. Belianinov, A. P. Baddorf, R. Proksch, and S. V. Kalinin, "Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging," Annu. Rev. Phys. Chem., 65 [1] 519-36 (2014). https://doi.org/10.1146/annurev-physchem-040513-103609
  55. Y. Kim, X. L. Lu, S. Jesse, D. Hesse, M. Alexe, and S. V. Kalinin, "Universality of Polarization Switching Dynamics in Ferroelectric Capacitors Revealed by 5D Piezoresponse Force Microscopy," Adv. Funct. Mater., 23 [32] 3971-79 (2013). https://doi.org/10.1002/adfm.201300079
  56. R. K. Vasudevan, S. Jesse, Y. Kim, A. Kumar, and S. V. Kalinin, "Spectroscopic Imaging in Piezoresponse Force Microscopy: New Opportunities for Studying Polarization Dynamics in Ferroelectrics and Multiferroics," MRS Commun., 2 [3] 61-73 (2012). https://doi.org/10.1557/mrc.2012.15
  57. R. K. Vasudevan, D. Marincel, S. Jesse, Y. Kim, A. Kumar, S. V. Kalinin, and S. Trolier-McKinstry, "Polarization Dynamics in Ferroelectric Capacitors: Local Perspective on Emergent Collective Behavior and Memory Effects," Adv. Funct. Mater., 23 [20] 2490-508 (2013). https://doi.org/10.1002/adfm.201203422
  58. S. Guo, O. S. Ovchinnikov, M. E. Curtis, M. B. Johnson, S. Jesse, and S. V. Kalinin, "Spatially Resolved Probing of Preisach Density in Polycrystalline Ferroelectric Thin Films," J. Appl. Phys., 108 [8] 084103 (2010). https://doi.org/10.1063/1.3493738

Cited by

  1. Homogeneous versus Inhomogeneous Polarization Switching in PZT Thin Films: Impact of the Structural Quality and Correlation to the Negative Capacitance Effect vol.11, pp.8, 2021, https://doi.org/10.3390/nano11082124
  2. “May the Force Be with You!” Force-Volume Mapping with Atomic Force Microscopy vol.6, pp.40, 2019, https://doi.org/10.1021/acsomega.1c03829