• 제목/요약/키워드: Euler polynomials

검색결과 104건 처리시간 0.019초

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

ON THE SPECIAL VALUES OF TORNHEIM'S MULTIPLE SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.305-315
    • /
    • 2015
  • Recently, Jianxin Liu, Hao Pan and Yong Zhang in [On the integral of the product of the Appell polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 9, 680-685] established an explicit formula for the integral of the product of several Appell polynomials. Their work generalizes all the known results by previous authors on the integral of the product of Bernoulli and Euler polynomials. In this note, by using a special case of their formula for Euler polynomials, we shall provide several reciprocity relations between the special values of Tornheim's multiple series.

SOME IDENTITIES OF THE GENOCCHI NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS

  • Lee, H.Y.;Jung, N.S.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1221-1228
    • /
    • 2011
  • Recently, several mathematicians have studied some interesting relations between extended q-Euler number and Bernstein polynomials(see [3, 5, 7, 8, 10]). In this paper, we give some interesting identities on the Genocchi polynomials and Bernstein polynomials.

FORMULAS AND RELATIONS FOR BERNOULLI-TYPE NUMBERS AND POLYNOMIALS DERIVE FROM BESSEL FUNCTION

  • Selin Selen Ozbek Simsek;Yilmaz Simsek
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1175-1189
    • /
    • 2023
  • The main purpose of this paper is to give some new identities and properties related to Bernoulli type numbers and polynomials associated with the Bessel function of the first kind. We give symmetric properties of the Bernoulli type numbers and polynomials. Moreover, using generating functions and the Faà di Bruno's formula, we derive some new formulas and relations related to not only these polynomials, but also the Bernoulli numbers and polynomials and the Euler numbers and polynomials.

Lucas-Euler Relations Using Balancing and Lucas-Balancing Polynomials

  • Frontczak, Robert;Goy, Taras
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.473-486
    • /
    • 2021
  • We establish some new combinatorial identities involving Euler polynomials and balancing (Lucas-balancing) polynomials. The derivations use elementary techniques and are based on functional equations for the respective generating functions. From these polynomial relations, we deduce interesting identities with Fibonacci and Lucas numbers, and Euler numbers. The results must be regarded as companion results to some Fibonacci-Bernoulli identities, which we derived in our previous paper.

q-DEDEKIND-TYPE DAEHEE-CHANGHEE SUMS WITH WEIGHT α ASSOCIATED WITH MODIFIED q-EULER POLYNOMIALS WITH WEIGHT α

  • Seo, Jong Jin;Araci, Serkan;Acikgoz, Mehmet
    • 충청수학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Recently, q-Dedekind-type sums related to q-Euler polynomials was studied by Kim in [T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125]. It is aim of this paper to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Dedekind-type sums with weight related to modified q-Euler polynomials with weight by using Kim's p-adic q-integral.

ON THE SYMMETRY PROPERTIES OF THE GENERALIZED HIGHER-ORDER EULER POLYNOMIALS

  • Bayad, Abdelmejid;Kim, Tae-Kyun;Choi, Jong-Sung;Kim, Young-Hee;Lee, Byung-Je
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.511-516
    • /
    • 2011
  • In this paper we prove a generalized symmetry relation between the generalized Euler polynomials and the generalized higher-order (attached to Dirichlet character) Euler polynomials. Indeed, we prove a relation between the power sum polynomials and the generalized higher-order Euler polynomials..