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Abstract. We establish some new combinatorial identities involving Euler polynomials

and balancing (Lucas-balancing) polynomials. The derivations use elementary techniques

and are based on functional equations for the respective generating functions. From these

polynomial relations, we deduce interesting identities with Fibonacci and Lucas numbers,

and Euler numbers. The results must be regarded as companion results to some Fibonacci-

Bernoulli identities, which we derived in our previous paper.

1. Motivation and Preliminaries

In 1975, Byrd [1] derived the following identity relating Lucas numbers to Euler
numbers:

(1.1)

bn/2c∑
k=0

(
n

2k

)(
5

4

)k
Ln−2kE2k = 21−n.

In [18], Wang and Zhang obtained a more general result valid for j ≥ 1 as follows

(1.2)

bn/2c∑
k=0

(
n

2k

)(
5

4

)k
F 2k
j Lj(n−2k)E2k = 21−nLnj .
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Castellanos [2] found

(1.3)

n∑
k=0

(
2n

2k

)
2−2k−1L2(n−k)jL

2k
j E2k =

(5

4

)n
F 2n
j ,

which expresses even powers of Fibonacci numbers in terms of Lucas and Euler
numbers.

Here, as usual, Fibonacci and Lucas numbers satisfy the recurrence relation
un = un−1 + un−2, n ≥ 2, with initial conditions F0 = 0, F1 = 1 and L0 = 2,
L1 = 1, respectively, whereas Euler numbers (En)n≥0 are given by the power series

∞∑
n=0

En
zn

n!
=

1

cosh z
.

Fibonacci and Lucas numbers are entries A000045 and A000032 in the On-Line
Encyclopedia of Integer Sequences [17], respectively.

The Lucas-Euler pair may be regarded as the twin of the Fibonacci-Bernoulli
pair. In the last years, there has been a growing interest in deriving new relations
for these two pairs of sequences. For example, Zhang and Ma [21] proved a relation
between Fibonacci polynomials and Bernoulli numbers (Bn)n≥0 defined by

∞∑
n=0

Bn
zn

n!
=

z

ez − 1
.

The following identity is a special case of their result:

n∑
k=0

(
n

k

)
5

n−k
2 FkBn−k = nβn−1,

where β = (1−
√

5)/2, or, equivalently,

(1.4)

bn/2c∑
k=0

(
n

2k

)
5kFn−2kB2k =

nLn−1
2

.

See also [14, 18, 19, 20] for other results in this direction. Recently, Frontczak [5],
Frontczak and Goy [7], and Frontczak and Tomovski [8] proved some generalizations
of existing results. For instance, from [7] we have

(1.5)

n∑
k=0

(
n

k

)
(
√

5Fj)
n−kFjkBn−k = nFjβ

j(n−1),

which holds for all j ≥ 1 and generalizes (1.4) to an arithmetic progression, and

(1.6)

bn/2c∑
k=0

(
n

2k

)
(20k − 5k)F 2k

2j L2j(n−2k)B2k =
5n

2
F2jF2j(n−1).
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Note, since B2n+1 = 0 for n ≥ 1, from (1.5) we get Kelisky’s formula [9]

bn/2c∑
k=0

(
n

2k

)
5kF 2k

j Fj(n−2k)B2k =
n

2
FjLj(n−1).

In this paper, we present new identities linking Lucas numbers to Euler numbers
(polynomials). The results stated are polynomial generalizations of (1.1) and are
complements of the recent discoveries from [5, 7].

Throughout the paper, we will work with different kind of polynomials of a com-
plex variable x: Euler polynomials (En(x))n≥0, Bernoulli polynomials (Bn(x))n≥0,
balancing polynomials (B∗n(x))n≥0, and Lucas-balancing polynomials (Cn(x))n≥0.

Euler and Bernoulli polynomials are famous mathematical objects and are fairly
well understood. They are defined by [3, Chapter 24]

(1.7) H(x, z) =

∞∑
n=0

Bn(x)
zn

n!
=

zexz

ez − 1
(|z| < 2π)

and

(1.8) I(x, z) =

∞∑
n=0

En(x)
zn

n!
=

2exz

ez + 1
(|z| < π).

The numbers Bn(0) = Bn are the famous Bernoulli numbers. Bernoulli numbers
are rational numbers starting with B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30,
B6 = 1/42, and so on. Also, as already mentioned, B2n+1 = 0 for n ≥ 1. Euler
numbers En are obtained from I(1/2, 2z) that is

(1.9) En = 2nEn(1/2).

In contrast to Bernoulli numbers, Euler numbers are integers where E0 = 1,
E2 = −1, E4 = 5 and E2n+1 = 0 for n ≥ 0. Explicit formulas for the polynomials
are

Bn(x) =

n∑
k=0

(
n

k

)
Bkx

n−k and En(x) =

n∑
k=0

(
n

k

)
Ek
2k

(
x− 1

2

)n−k
.

Euler polynomials can be expressed in terms of Bernoulli polynomials via

En(x) =
2

n+ 1

(
Bn+1(x)− 2n+1Bn+1

(x
2

))
.

Particularly,

(1.10) En(0) =
2 (1− 2n+1)

n+ 1
Bn+1.
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Balancing polynomials are of younger age and are introduced in the next sec-
tion.

2. Balancing and Lucas-Balancing Polynomials

Balancing polynomials B∗n(x) and Lucas-balancing polynomials Cn(x) are gen-
eralizations of balancing and Lucas-balancing numbers [4]. These polynomials sat-
isfy the recurrence wn(x) = 6xwn−1(x)−wn−2(x), n ≥ 2, but with the respectively
initial conditions B∗0(x) = 0, B∗1(x) = 1 and C0(x) = 1, C1(x) = 3x. The Binet
formulas for these polynomials are

B∗n(x) =
λn(x)− λ−n(x)

2
√

9x2 − 1
and Cn(x) =

λn(x) + λ−n(x)

2
,

where λ(x) = 3x+
√

9x2 − 1. Also, the following explicit formulas hold [15, 16]

B∗n(x) =

b(n−1)/2c∑
k=0

(−1)k
(
n− 1− k

k

)
(6x)n−1−2k, n ≥ 0,

Cn(x) =
n

2

bn/2c∑
k=0

(−1)k

n− k

(
n− k
k

)
(6x)n−2k, n ≥ 1.

Consult the papers [4, 6, 10, 11, 12, 13, 16] for more information about these
polynomials. The numbers B∗n(1) = B∗n and Cn(1) = Cn are called balancing and
Lucas-balancing numbers, respectively. These numbers are indexed in [17] under
entries A001109 and A001541.

Balancing and Lucas-balancing polynomials possess interesting properties.
They are related to Chebyshev polynomials by simple scaling [4, Lemma 2.1]. The
exponential generating functions for balancing and Lucas-balancing polynomials are
derived in [4, 6]. Here, however, we will only need the results from [6]: Let b1(x, z)
and b2(x, z) be the exponential generating functions of odd and even indexed bal-
ancing polynomials, respectively. Then

b1(x, z) =

∞∑
n=0

B∗2n+1(x)
zn

n!

=
e(18x

2−1)z
√

9x2 − 1

(
3x sinh(6x

√
9x2 − 1z) +

√
9x2 − 1 cosh(6x

√
9x2 − 1z)

)
(2.1)

and

(2.2) b2(x, z) =

∞∑
n=0

B∗2n(x)
zn

n!
=
e(18x

2−1)z
√

9x2 − 1
sinh(6x

√
9x2 − 1z).
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Similarly, the exponential generating functions for Lucas-balancing polynomials
are found to be

c1(x, z) =

∞∑
n=0

C2n+1(x)
zn

n!

= e(18x
2−1)z(3x cosh(6x

√
9x2 − 1z) +

√
9x2 − 1 sinh(6x

√
9x2 − 1z)

)
(2.3)

and

(2.4) c2(x, z) =

∞∑
n=0

C2n(x)
zn

n!
= e(18x

2−1)z cosh(6x
√

9x2 − 1z).

Connections between Bernoulli polynomials Bn(x) and balancing polynomials
B∗n(x) have been established in the recent papers [5, 7]. They are interesting, as
they instantly give relations between Bernoulli numbers and Fibonacci and Lucas
numbers. The links are the following evaluations [4]

(2.5) B∗n

(
ωs
Ls
6

)
= ωn−1s

Fsn
Fs

, Cn

(
ωs
Ls
6

)
= ωns

Lsn
2
,

where ωs = 1, if s is even, and ωs = i =
√
−1, if s is odd. These links will be used

to prove our results.

3. Relations Between Euler and Balancing (Lucas-Balancing) Polynomi-
als

We start with the following result involving even indexed balancing and Lucas-
balancing polynomials.

Theorem 3.1. For each n ≥ 1 and x ∈ C, we have

bn/2c∑
k=1

(
n− 1

2k − 1

)
C2(n−2k)(x)

(
144x2(9x2 − 1)

)k
E2k−1(0)

= 12x(1− 9x2)B∗2n−2(x).(3.1)

Proof. Since tanh z = 1− 2

e2z + 1
, from (1.8) we get

I(0, 12x
√

9x2 − 1z) = 1− tanh(6x
√

9x2 − 1z)
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and, by (2.2) and (2.4),

∞∑
n=0

( n∑
k=0

(
n

k

)
C2(n−k)

(
12x
√

9x2 − 1)kEk(0)
)zn
n!

=

∞∑
n=0

( n−1∑
k=0

(
n

k

)
C2k

(
12x
√

9x2 − 1)n−kEn−k(0) + C2n(x)
)zn
n!

= c2(x, z)I(0, 12x
√

9x2 − 1z)

= e(18x
2−1)z(cosh(6x

√
9x2 − 1z)− sinh(6x

√
9x2 − 1z)

)
= c2(x, z)−

√
9x2 − 1b2(x, z)

=

∞∑
n=0

(
C2n(x)−

√
9x2 − 1B∗2n(x)

)zn
n!
.

Thus,

n∑
k=0

(
n

k

)
C2(n−k)

(
12x
√

9x2 − 1)kEk(0) = C2n(x)−
√

9x2 − 1B∗2n(x).

Since E2n−1 = 0 for n ≥ 1, after some algebra we have (3.1). 2

Corollary 3.2. For each n ≥ 1 and j ≥ 1,

(3.2)

bn/2c∑
k=0

(
n− 1

2k − 1

)
5k−1F 2k−1

2j L2j(n−2k)E2k−1(0) = −F2j(n−1).

Proof. Evaluate (3.1) at the x = ωjLj/6 and use the links from (2.5). To simplify
recall that L2

n − 5F 2
n = (−1)n4 and F2n = FnLn. 2

Using (1.10), we can write (3.2) as

bn/2c∑
k=0

(
n− 1

2k − 1

)
20k − 5k

k
F 2k−1
2j L2j(n−2k)B2k = 5F2j(n−1),

which is easily reduced to (1.6).
We also have the following interesting identity.

Theorem 3.3. For each n ≥ 0 and x ∈ C, we have the relation

(3.3)

bn/2c∑
k=0

(
n

2k

)
C2(n−2k)(x)

(
36x2(9x2 − 1)

)k
E2k =

(
18x2 − 1

)n
.
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Proof. The result is a consequence of the fact that

c2(x, z)I(1/2, 12x
√

9x2 − 1z) = e(18x
2−1)z. 2

Corollary 3.4. For each n ≥ 0 and j ≥ 1,

(3.4)

bn/2c∑
k=0

(
n

2k

)(5

4

)k
F 2k
2j L2j(n−2k)E2k = 21−nLn2j .

Proof. Evaluate (3.3) at the point x = ωjLj/6 and use the links from (2.5). When
simplifying you will also need the formula L2

n − L2n = (−1)n2. 2

Interestingly, if j = 1/2 from (3.4) we obtain Byrd’s result (1.1). Also, when
j = 1 and j = 2, from (3.4) we obtain the following Lucas-Euler relations:

bn/2c∑
k=0

(
n

2k

)(5

4

)k
L2(n−2k)E2k = 2

(3

2

)n
,

bn/2c∑
k=0

(
n

2k

)(45

4

)k
L4(n−2k)E2k = 2

(7

2

)n
,(3.5)

respectively. The first example appears as equation (31) in [5].
A different expression for the sum on the left of (3.3) is stated next.

Theorem 3.5. For each n ≥ 0 and x ∈ C, we have

bn/2c∑
k=0

(
n

2k

)
C2(n−2k)(x)

(
36x2(9x2 − 1)

)k
E2k

=

n∑
k=0

(
n

k

)(
C2k(x)−

√
9x2 − 1B∗2k(x)

)
(6x
√

9x2 − 1)n−k.(3.6)

Proof. We use the identity

I(1/2, 2z) = ez(1− tanh z),

from which the functional equation follows

c2(x, z)I(1/2, 12x
√

9x2 − 1z) = e(6x
√
9x2−1)z(c2(x, z)−

√
9x2 − 1b2(x, z)

)
.

Thus,

n∑
k=0

(
n

k

)
C2k(x)(6x

√
9x2 − 1)n−kEn−k

=

n∑
k=0

(
n

k

)(
C2k(x)−

√
9x2 − 1B∗2k(x)

)
(6x
√

9x2 − 1)n−k,
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that is equivalent to (3.6). 2

Theorem 3.6. For each n ≥ 0 and x ∈ C, it is true that

n∑
k=0

(
n

k

)
C2(n−k)(x)

(
12x
√

9x2 − 1
)k
Ek(x)=

(
18x2 − 1 + 6x(2x− 1)

√
9x2 − 1

)n
.

Proof. The functional relation cosh(z/2)I(x, z) = e(x−1/2)z produces immediately

c2(x, z)I(x, 12x
√

9x2 − 1z) = e(18x
2−1+6x(2x−1)

√
9x2−1)z.

Comparing the coefficients of z in the power series expansions on both sides gives
the identity. 2

When x = 1/2, then we recover (3.5), by (1.9).

4. Other Special Polynomial Identities

The following result appears as Theorem 13 in [7]: For each n ≥ 0, j ≥ 1, and
x ∈ C, we have

n∑
k=0

(
n

k

)
Fjk(
√

5Fj)
n−kBn−k(x) = nFj

(
(
√

5x+ β)Fj + Fj−1
)n−1

,

n∑
k=0

(
n

k

)
Fjk(−

√
5Fj)

n−kBn−k(x) = nFj
(
(α−

√
5x)Fj + Fj−1

)n−1
,

where α = (1 +
√

5)/2 is the golden ratio and β = (1−
√

5)/2 = −1/α.
Now, we present the analogue result for the Lucas-Euler pair:

Theorem 4.1. The following polynomial identity is valid for all n ≥ 0, j ≥ 1, and
x ∈ C:

n∑
k=0

(
n

k

)
Ljk(
√

5Fj)
n−kEn−k(x) = 2

(
(
√

5x+ β)Fj + Fj−1
)n
,(4.1)

n∑
k=0

(
n

k

)
Ljk(−

√
5Fj)

n−kEn−k(x) = 2
(
(α−

√
5x)Fj + Fj−1

)n
.(4.2)

Proof. Let L(z) be the exponential generating function for (Ljn)n≥0, j ≥ 1. Then,
using the Binet formula for Ln, we get

L(z) = 2e(1/2Fj+Fj−1)z cosh
(√5Fj

2
z
)
.
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Thus, it follows that

∞∑
n=0

( n∑
k=0

(
n

k

)
Ljk(
√

5Fj)
n−kEn−k(x)

)zn
n!

= L(z)I(x,
√

5Fjz)

= 2 e

(
(x−1/2)

√
5Fj+1/2Fj+Fj−1

)
z

= 2 e

(
(
√
5x+β)Fj+Fj−1

)
z.

This proves the first equation. The second follows upon replacing x by 1 − x and
using En(1− x) = (−1)nEn(x) and α− β =

√
5. 2

Note that the relations (4.1) and (4.2) provide a generalization of (3.4). To see
this, notice that they can be written more compactly as

(4.3)

n∑
k=0

(
n

k

)
Ljk(±

√
5Fj)

n−kEn−k(x) = 21−n
(
Lj ±

√
5Fj(2x− 1)

)n
.

Now, if x = 1/2, we get

n∑
k=0

(
n

k

)(
±
√

5Fj
)n−k

2kLjkEn−k = 2Lnj ,

which is equivalent to (3.4). We also mention the nice and curious identities

n∑
k=0

(
n

k

)(
±
√

5Fj
)n−k

LjkEn−k(α) = 2(±1)nLnj±1,

n∑
k=0

(
n

k

)(
±
√

5Fj
)n−k

LjkEn−k(β) = 2(∓1)nLnj∓1,

which can be deduced from (4.3) and 5Fn = Ln+1 + Ln−1.
We conclude this presentation with the following interesting corollary.

Corollary 4.2. Let n, j and q be integers with n, j ≥ 1 and q odd. Then it holds
that

n∑
k=0

(
n

k

)
(
√

5Fj)
n−k(q−(n−k) − 1

)
LjkEn−k(0) = 2q−n

q−1∑
r=1

(−1)r
(
rαj + (q − r)βj

)n
.

Proof. The known multiplication formula for Euler polynomials for odd q [3, Chap-
ter 24]

qn
q−1∑
r=0

(−1)rEn

(
x+

r

q

)
= En(qx)
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yields
q−1∑
r=1

(−1)rEn

(r
q

)
=
(
q−n − 1

)
En(0).

Therefore,

n∑
k=0

(
n

k

)
Ljk(
√

5Fj)
n−k(q−(n−k) − 1

)
En−k(0)

= 2

q−1∑
r=1

(−1)r
((√

5
r

q
+ β

)
Fj + Fj−1

)n
= 2q−n

q−1∑
r=1

(−1)r
(√

5rFj + q(βFj + Fj−1)
)n

= 2q−n
q−1∑
r=1

(−1)r
(
rαj + (q − r)βj

)n
. 2

The special instances for j = 1, and q = 3 and q = 5, respectively, take the form

n∑
k=0

(
n

k

)
(
√

5)n−k
(
3−(n−k) − 1

)
En−k(0) = 2

√
5 · 3−nF2n

and

n∑
k=0

(
n

k

)
(
√

5)n−k
(
5−(n−k)−1

)
LkEn−k(0) =

{
2 · 5(1−n)/2(F2n − Fn), if n is even;

2 · 5−n/2(L2n − Ln), if n is odd.

5. Mixed Polynomial Identities

In this section, we derive some mixed identities involving Bernoulli (Euler)
polynomials and Bernoulli, Fibonacci and Lucas numbers.

Theorem 5.1. For each n, j ≥ 0 and x ∈ C,

n∑
k=0

(
n

k

)
(±
√

5Fj)
kLj(n−k)Bk(x)

= 21−n
bn/2c∑
k=0

(
n

2k

)
20kF 2k

j

(
±
√

5Fj(2x− 1) + Lj
)n−2k

B2k.(5.1)
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Proof. The result follows from the functional relation

H(x,±
√

5Fjz)L(z) =
√

5Fje
(±(x−1/2)

√
5Fj+1/2Lj)zz coth

(√5Fj
2

z
)

and the well-known power series coth z =

∞∑
n=0

4nB2n

(2n)!
z2n−1. 2

If x = 1/2, from (5.1) using Bn(1/2) = (21−n − 1)Bn, we obtain the following
result.

Corollary 5.2. For each n, j ≥ 0,

bn/2c∑
k=0

(
n

2k

)
5k(21−2k − 1)F 2k

j Lj(n−2k)B2k = 21−nLnj

bn/2c∑
k=0

(
n

2k

)
20k
(Fj
Lj

)2k
B2k.

For example,

bn/2c∑
k=0

(
n

2k

)
(21−2k − 1)5kB2kLn−2k = 21−n

bn/2c∑
k=0

(
n

2k

)
20kB2k

and
bn/2c∑
k=0

(
n

2k

)
(21−2k − 1)20kB2kL3(n−2k) = 21+n

bn/2c∑
k=0

(
n

2k

)
5kB2k.

If x = α and x = β, where α = (1 +
√

5)/2 is the golden ratio and β = −1/α,
from (5.1) we have the following corollary.

Corollary 5.3. For each n, j ≥ 0,

n∑
k=0

(
n

k

)
(
√

5Fj)
kLj(n−k)Bk(α) = 2Lnj+1

bn/2c∑
k=0

(
n

2k

)
5k
( Fj
Lj+1

)2k
B2k,

n∑
k=0

(
n

k

)
(−
√

5Fj)
kLj(n−k)Bk(α) = 2(−1)nLnj−1

bn/2c∑
k=0

(
n

2k

)
5k
( Fj
Lj−1

)2k
B2k

and

n∑
k=0

(
n

k

)
(
√

5Fj)
kLj(n−k)Bk(β) = 2(−1)nLnj−1

bn/2c∑
k=0

(
n

2k

)
5k
( Fj
Lj−1

)2k
B2k,

n∑
k=0

(
n

k

)
(−
√

5Fj)
kLj(n−k)Bk(β) = 2Lnj+1

bn/2c∑
k=0

(
n

2k

)
5k
( Fj
Lj+1

)2k
B2k.
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Finally, we present the theorem for Fibonacci-Euler pair.

Theorem 5.4. For each n ≥ 0 and j ≥ 1,

(n+ 1)

n∑
k=0

(
n

k

)
(
√

5Fj)
kFj(n−k)Ek(x)

= 4

bn+1
2 c∑

k=0

(
n+ 1

2k

)
5k−1(4k − 1)F 2k−1

j

(
Fj
2

+ Fj−1 +
√

5Fj

(
x− 1

2

))n+1−2k

B2k

and

(−1)n(n+ 1)

n∑
k=0

(
n

k

)
(−
√

5Fj)
kFj(n−k)Ek(x)

= 4

bn+1
2 c∑

k=0

(
n+ 1

2k

)
5k−1(4k − 1)F 2k−1

j

(
Fj
2

+ Fj−1 −
√

5Fj

(
x− 1

2

))n+1−2k

B2k.

Proof. Let F (z) be the exponential generating function for (Fjn)n≥0 with j ≥ 1.
Then, using the Binet formula for Fn, we get

F (z) =
2√
5
e(1/2Fj+Fj−1)z sinh

(√5Fj
2

z
)
.

The relations follows from

I(x,±
√

5Fjz)F (z) =
2√
5
e(Fj/2+Fj−1+(x−1/2)

√
5Fj)z tanh

(√5Fj
2

z
)

and power series

tanh z =

∞∑
n=0

4n(4n − 1)B2n

(2n)!
z2n−1. 2

In particularly, from Theorem 5.4 we have the following Euler-Bernoulli-
Fibonacci-Lucas identity:

(n+ 1)

n∑
k=1

(
n

k

)(
±
√

5Fj
2

)k
Fj(n−k)Ek

=
Lnj

2n−2

bn+1
2 c∑

k=0

(
n+ 1

2k

)
5k−1(4k − 1)

(
2Fj
Lj

)2k−1

B2k.
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6. Conclusion

In this paper, we have documented identities relating Euler numbers (polynomi-
als) to balancing and Lucas-balancing polynomials. We have also derived a general
identity involving Euler polynomials and Lucas numbers in arithmetic progression.
All results must be seen as companion results to the Fibonacci-Bernoulli pair from
[7]. In the future, we will work on more identities connecting Bernoulli/Euler num-
bers (polynomials) with Fibonacci/Lucas numbers (polynomials).
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