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Abstract. In this paper, we investigate the distribution of the zeros of
the Euler-Fibonacci polynomials by using computer.
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1. Introduction

In this paper, we investigate the distribution of zeros of the Euler-Fibonacci
polynomials by using computer. Throughout this paper, we always make use of
the following notations: Z+ denotes the set of nonnegative integers, Z denotes
the set of integers, R denotes the set of all real numbers and C denotes the set
of complex numbers, respectively.

The authors [1, 2, 4] introduced generating functions for Euleri numbers En

and Euler polynomials En(x) as follow
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Now, we give some definitions (for these definitions see [11, 12]) that we will use
throughout the article. The F -factorial is defined as

Fn! = Fn · Fn−1 · Fn−2 · · ·F1, F0! = 1.

where Fn is n-th Fibonacci numbers. The Fibonomial coefficients are defined as
(0 ≤ k ≤ n) as (
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The binomial theorem for the F -analogues (or-Golden binomial theorem) are
given by
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The F -exponential functions eF (x) and EF (x) are defined as:
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∞∑
n=0

xn

Fn!
, EF (x) =

∞∑
n=0

(−1)(
n
2) x

n

Fn!
.

The following identity holds

exFE
x
F = e
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The author [6] defined generating functions for Euler-Fibonacci numbers En,F

and Euler-Fibonacci polynomials En,F (x) as follow
∞∑
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Theorem 1.1. For n ≥ 1, we have

(1) En,F (x) =
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l=0

(
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(2)
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F

El,F (x) + En,F (x) = 2xn.

For the first few Euler-Fibonacci numbers we have,
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2. Zeros of the Euler-Fibonacci polynomials

This section aims to demonstrate the benefit of using numerical investiga-
tion to support theoretical prediction and to discover new interesting pattern
of the zeros of the Euler-Fibonacci polynomials En,F (x). The Euler-Fibonacci
polynomials En,F (x). can be determined explicitly. A few of them are

E0,F (x) = 1,

E1,F (x) = −1

2
+ x,

E2,F (x) = −1

4
− x

2
+ x2,

E3,F (x) =
1

4
− x

2
− x2 + x3,

E4,F (x) =
5

8
+

3x

4
− 3x2

2
− 3x3

2
+ x4,

E5,F (x) = −13

16
+

25x

8
+

15x2

4
− 15x3

4
− 5x4

2
+ x5,

E6,F (x) = −41

4
− 13x

2
+ 25x2 + 15x3 − 10x4 − 4x5 + x6.

E7,F (x) = −87

8
− 533x

4
− 169x2

2
+

325x3

2
+ 65x4 − 26x5 − 13x6

2
+ x7,

E8,F (x) =
16995

16
+

1827x

8
− 11193x2

4
− 3549x3

4
+

2275x4

2
+ 273x5

− 273x6

4
− 21x7

2
+ x8,

E9,F (x) =
40367

16
+

288915x

8
+

31059x2

4
− 190281x3

4
− 20111x4

2
+ 7735x5

+
4641x6

4
− 357x7

2
− 17x8 + x9,

E10,F (x) = −22615103

32
+

2220185x

16
+

15890325x2

8
+

1708245x3

8
− 3488485x4

4

− 221221x5

2
+

425425x6

8
+

19635x7

4
− 935x8

2
− 55x9

2
+ x10,

E11,F (x) = −889776019

64
− 2012744167x

32
+

197596465x2

16
+

1414238925x3

16

+
50677935x4

8
− 62095033x5

4
− 19688669x6

16
+

2912525x7

8

+
83215x8

4
− 4895x9

4
− 89x10

2
+ x11.



122 Young Rok Kim, Ji Eun Choi, Cheon Seoung Ryoo

We investigate the zeros of the Euler-Fibonacci polynomials En,F (x) = 0.
by using a computer. We plot the zeros of the Euler-Fibonacci polynomials
En,F (x) = 0 for x ∈ C(Figure 1). In Figure 1(top-left), we choose n = 15.
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Figure 1. Zeros of En,F (x) = 0

In Figure 1(top-right), we choose n = 25. In Figure 1(bottom-left), we choose
n = 35. In Figure 1(bottom-right), we choose n = 45.
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Stacks of zeros of the Euler polynomials En(x) = 0 for 1 ≤ n ≤ 50 from a
3-D structure are presented(Figure 2).

Figure 2. Stacks of zeros of En(x) = 0 for 1 ≤ n ≤ 40

Stacks of zeros of the Euler-Fibonacci polynomials En,F (x) = 0 for 1 ≤ n ≤ 50
from a 3-D structure are presented(Figure 3).

Figure 3. Stacks of zeros of En,F (x) = 0 for 1 ≤ n ≤ 40
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The plot of real zeros of Euler polynomials En(x) = 0 for 1 ≤ n ≤ 40 structure
are presented(Figure4).

Figure 4. Real zeros of En(x) = 0 = 0 for 1 ≤ n ≤ 50

The plot of real zeros of Euler-Fibonacci polynomials En,F (x) = 0 for 1 ≤
n ≤ 50 structure are presented(Figure 5).

Figure 5. Real zeros of En,F (x) = 0 = 0 for 1 ≤ n ≤ 50
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Next, we calculated an approximate solution satisfying Euler-Fibonacci poly-
nomials En,F (x) = 0 for x ∈ C. The results are given in Table 1.

Table 1. Approximate solutions of En,F (x) = 0

degree n x

1 0.50000

2 −0.30902, 0.80902

3 −0.58504, 0.34445, 1.2406

4 −0.62348− 0.15690i, −0.62348 + 0.15690i,

0.76158, 1.9854

5 −1.1041, −0.94468, 0.21728,

1.1144, 3.2171

6 −1.8098, −1.1845, −0.71841,

0.71086, 1.7998, 5.2020

7 −2.9500, −2.0958, −0.88759,

0.078327, 1.0363, 2.9000,

8.4188

8 −4.7588, −3.3229, −1.3169,

−0.73430, 0.65446, 1.6582,

4.6995, 13.621

9 −7.7092, −5.4213, −2.1919,

−0.88794, −0.071429, 0.96992,

2.6730, 7.5993, 22.040
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