

J. Appl. & Pure Math. Vol. 6(2024), No. 3 - 4, pp. 119 - 126 https://doi.org/10.23091/japm.2024.119

ZEROS OF THE EULER-FIBONACCI POLYNOMIALS

YOUNG ROK KIM, JI EUN CHOI, CHEON SEOUNG RYOO[∗]

Abstract. In this paper, we investigate the distribution of the zeros of the Euler-Fibonacci polynomials by using computer.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : Euler numbers and polynomials, Fibonacci numbers, Euler-Fibonacci polynomials.

1. Introduction

In this paper, we investigate the distribution of zeros of the Euler-Fibonacci polynomials by using computer. Throughout this paper, we always make use of the following notations: \mathbb{Z}_+ denotes the set of nonnegative integers, $\mathbb Z$ denotes the set of integers, $\mathbb R$ denotes the set of all real numbers and $\mathbb C$ denotes the set of complex numbers, respectively.

The authors $[1, 2, 4]$ introduced generating functions for Euleri numbers E_n and Euler polynomials $E_n(x)$ as follow

$$
\sum_{n=0}^{\infty} E_n \frac{t^n}{n!} = \frac{2}{e^t + 1}, \quad \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} = \left(\frac{2}{e^t + 1}\right) e^{xt}.
$$

Now, we give some definitions (for these definitions see [11, 12]) that we will use throughout the article. The F -factorial is defined as

$$
F_n! = F_n \cdot F_{n-1} \cdot F_{n-2} \cdots F_1, \quad F_0! = 1.
$$

where F_n is *n*-th Fibonacci numbers. The Fibonomial coefficients are defined as $(0 \leq k \leq n)$ as

$$
\binom{n}{k}_F = \frac{F_n!}{F_{n-k}!F_k!}
$$

with $\binom{n}{0}_F = \binom{n}{n}_F = 1$ and $\binom{n}{k}_F = 0$ for $n < k$.

Received January 16, 2024. Revised July 21, 2024. Accepted July 22, 2024. *Corresponding author.

[©] 2024 KSCAM.

The binomial theorem for the F-analogues (or-Golden binomial theorem) are given by

$$
(x+y)_F^n = \sum_{k=0}^n (-1)^{\binom{n}{2}} \binom{n}{k}_F x^{n-k} y^k
$$

The F-exponential functions $e_F(x)$ and $E_F(x)$ are defined as:

$$
e_F(x) = \sum_{n=0}^{\infty} \frac{x^n}{F_n!}
$$
, $E_F(x) = \sum_{n=0}^{\infty} (-1)^{\binom{n}{2}} \frac{x^n}{F_n!}$.

The following identity holds

$$
e_F^x E_F^x = e_F^{(x+y)_F}
$$

The author [6] defined generating functions for Euler-Fibonacci numbers $E_{n,F}$ and Euler-Fibonacci polynomials $E_{n,F}(x)$ as follow

$$
\sum_{n=0}^{\infty} E_{n,F} \frac{t^n}{F_n!} = \frac{2}{e_F(t) + 1},
$$

$$
\sum_{n=0}^{\infty} E_{n,F}(x) \frac{t^n}{F_n!} = \left(\frac{2}{e_F(t) + 1}\right) e_F(xt).
$$

Theorem 1.1. For $n \geq 1$, we have

(1)
$$
E_{n,F}(x) = \sum_{l=0}^{n} {n \choose l}_{F} E_{l,F} x^{n-l}.
$$

(2)
$$
\sum_{l=0}^{n} {n \choose l}_{F} E_{l,F}(x) + E_{n,F}(x) = 2x^{n}
$$

.

For the first few Euler-Fibonacci numbers we have,

$$
E_{0,F} = 1, \quad E_{1,F} = -\frac{1}{2}, \quad E_{2,F} = -\frac{1}{4}, \quad E_{3,F} = \frac{1}{4},
$$
\n
$$
E_{4,F} = \frac{5}{8}, \quad E_{5,F} = -\frac{13}{16}, \quad E_{6,F} = -\frac{41}{4}, \quad E_{7,F} = -\frac{87}{8},
$$
\n
$$
E_{8,F} = \frac{16995}{16}, \quad E_{9,F} = \frac{40367}{16}, \quad E_{10,F} = -\frac{22615103}{32},
$$
\n
$$
E_{11,F} = -\frac{889776019}{64}, \quad E_{12,F} = \frac{24141921365}{8}, \quad E_{13,F} = \frac{4412564523437}{16},
$$
\n
$$
E_{14,F} = -\frac{2609751415277683}{32}, \quad E_{15,F} = -\frac{980874706013690667}{32}.
$$

2. Zeros of the Euler-Fibonacci polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeros of the Euler-Fibonacci polynomials $E_{n,F}(x)$. The Euler-Fibonacci polynomials $E_{n,F}(x)$. can be determined explicitly. A few of them are $F = (x) = 1$

-100 -50 0 50 100 150 $-1.$ -0.5 $Im(x)$ 0.0 0.5 1.0 Re(x) -3000 -2000 -1000 0 1000 2000 3000 $-1.$ $-0.$ 0.0 0.5 1.0 Re(x) $m(x)$ -40000 -20000 0 20000 40000 -1.0 -0.5 0.0 0.5 1.0 Re(x) $Im(x)$ -2×10^6 -1×10^6 0 1×10^6 2×10^6 -1.0 $-0.$ 0.0 $\mathbf{0}$ 1.0 Re(x) $Im(x)$

We investigate the zeros of the Euler-Fibonacci polynomials $E_{n,F}(x) = 0$. by using a computer. We plot the zeros of the Euler-Fibonacci polynomials $E_{n,F}(x) = 0$ for $x \in \mathbb{C}$ (Figure 1). In Figure 1(top-left), we choose $n = 15$.

FIGURE 1. Zeros of $E_{n,F}(x) = 0$

In Figure 1(top-right), we choose $n = 25$. In Figure 1(bottom-left), we choose $n = 35$. In Figure 1(bottom-right), we choose $n = 45$.

Stacks of zeros of the Euler polynomials $E_n(x) = 0$ for $1 \leq n \leq 50$ from a 3-D structure are presented(Figure 2).

FIGURE 2. Stacks of zeros of $E_n(x) = 0$ for $1 \le n \le 40$

Stacks of zeros of the Euler-Fibonacci polynomials $E_{n,F}(x)=0$ for $1\leq n\leq 50$ from a 3-D structure are presented(Figure 3).

FIGURE 3. Stacks of zeros of $E_{n,F}(x) = 0$ for $1 \le n \le 40$

The plot of real zeros of Euler polynomials $E_n(x)=0$ for $1\leq n\leq 40$ structure are presented(Figure4).

FIGURE 4. Real zeros of $E_n(x) = 0 = 0$ for $1 \le n \le 50$

The plot of real zeros of Euler-Fibonacci polynomials $E_{n,F}(x) = 0$ for $1 \leq$ $n\leq 50$ structure are presented
(Figure 5).

FIGURE 5. Real zeros of $E_{n,F}(x) = 0 = 0$ for $1 \le n \le 50$

Next, we calculated an approximate solution satisfying Euler-Fibonacci polynomials $E_{n,F}(x) = 0$ for $x \in \mathbb{C}$. The results are given in Table 1.

degree n	\boldsymbol{x}
$\mathbf{1}$	0.50000
$\overline{2}$	$-0.30902, 0.80902$
3	$\label{eq:3.1} -0.58504, \quad 0.34445, \quad 1.2406$
$\overline{4}$	$-0.62348 - 0.15690i, -0.62348 + 0.15690i,$
	0.76158, 1.9854
5	$-1.1041, -0.94468, 0.21728,$
	1.1144, 3.2171
6	$-1.8098, -1.1845, -0.71841,$
	0.71086, 1.7998, 5.2020
7	$-2.9500, -2.0958, -0.88759,$
	0.078327, 1.0363, 2.9000,
	8.4188
8	$-4.7588, -3.3229, -1.3169,$
	$-0.73430, 0.65446, 1.6582,$
	4.6995, 13.621
9	$-7.7092, -5.4213, -2.1919,$
	$-0.88794, -0.071429, 0.96992,$
	2.6730, 7.5993, 22.040

Table 1. Approximate solutions of $E_{n,F}(x) = 0$

Conflicts of interest : The authors declare no Conflicts of interest.

Data availability : Not applicable

REFERENCES

- 1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Courier Corporation, USA, 1972.
- 2. G.E. Andrews, R. Askey, R. Roy, Special Functions, Vol. 71, Combridge Press, Cambridge, UK, 1999.
- 3. N.S. Jung, C.S. Ryoo, Identities involving q-analogue of modified tangent polynomials, J. App. Math. & Informatics 39 (2021), 643-654.
- 4. N.S. Jung, C.S. Ryoo, Fully Modified (p, q)-poly-tangent polynomials with two variables, J. App. Math. & Informatics 41 (2023), 753-763.
- 5. M. Kaneko, $Poly\mbox{-}Bernoulli$ numbers, J. Théor. Nombres Bordeaux 9 (1997), 199-206.
- 6. M. Ozvatan, Generalized Golden-Fibonacci calculus and applications, Master Thesis, The Graduate School of Engineering and Sciences of Izmir Institute of Technology, Izmir, 2018.
- 7. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7 (2013), 447-454.

Young Rok Kim received Ph.D. degree from Hannam University. His research interests focus on the differential equations, quantum calculus, and special functions.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea. e-mail: cantor4321@gmail.com

Ji Eun Choi received Ph.D. degree from Hannam University. Her research interests focus on the differential equations, quantum calculus, and special functions.

Department of Education Air Force Aviation Science High School, Jinju, 52839 Republic of Korea..

e-mail: klld707@hanmail.net

Cheon Seoung Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing, functional analysis, and analytic number theory. More recently, he has been working with differential equations, dynamical systems, quantum calculus, and special functions.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea. e-mail: ryoocs@hnu.kr