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ON THE SPECIAL VALUES OF TORNHEIM’S MULTIPLE

SERIES†

MIN-SOO KIM

Abstract. Recently, Jianxin Liu, Hao Pan and Yong Zhang in [On the in-
tegral of the product of the Appell polynomials, Integral Transforms Spec.
Funct. 25 (2014), no. 9, 680–685] established an explicit formula for the in-

tegral of the product of several Appell polynomials. Their work generalizes
all the known results by previous authors on the integral of the product
of Bernoulli and Euler polynomials. In this note, by using a special case
of their formula for Euler polynomials, we shall provide several reciprocity

relations between the special values of Tornheim’s multiple series.
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1. Introduction

Let N be the set of natural numbers, N0 = N∪{0}. The Bernoulli polynomials
Bk(x) are defined by

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, (1)

and the Euler polynomials Ek(x) are defined by

2ext

et + 1
=

∞∑
k=0

Ek(x)
tk

k!
(2)

(see Zhi-Wei Sun’s lecture [17]).
Notice that the Bernoulli numbers Bk = Bk(0) and the Euler numbers

Ek = 2kEk

(
1

2

)
. (3)
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In his classical book “Vorlesungen uber Differenzenrechnung”, Nörlund pre-
sented the following formula for the integrals of two Bernoulli and Euler poly-
nomials [13, p. 31 and 36]:∫ 1

0

Bk(z)Bm(z)dz = (−1)k−1 k!m!

(k +m+ 1)!
Bk+m, k,m ∈ N,∫ 1

0

Ek(z)Em(z)dz = 2(−1)k+1 k!m!

(k +m+ 1)!
Ek+m+1(0), k,m ∈ N0.

(4)

For the integral of two Bernoulli polynomials, Nielsen [12] and Mordell [11]
provided two different proofs. In the appendix of a very recent book [1], Zagier
also gave another interesting proof by using the Fourier expansion of Bernoulli
polynomials (see [1, p. 250, Proposition A.8.]). In 1958, Mordell remarked:
“The integrals containing the product of more than two Bernoulli polynomials
do not appear to lead to simple results.” (See [11, p. 375]). Later, Carlitz [4]
presented a proof of formulas on the integrals of the products of three and four
Bernoulli polynomials. Subsequently, Wilson [20] generalized Carlitz’s result
on the integral of the product of three Bernoulli polynomials by evaluating the
integral ∫ 1

0

Bk(az)Bl(bz)Bm(cz)dz, (5)

where Bk(x) is the periodic extension of Bk(x) on [0, 1) and a, b, c are pairwise
coprime integers. Carlitz’s result becomes a special case when a = b = c = 1.
Similar integral evaluations have also been used by Espinosa and Moll [7] during
their study on Tornheim’s double sums.

We also see that it is a reasonable convention to set

Ck1,...,kr (x) = 0 when min{k1, . . . , kr} < 0.

In 2011, Agoh and Dilcher [3] generalized the result of Wilson and showed
that

Proposition 1.1 (Agoh and Dilcher [3, Proposition 3]). For k, l,m ∈ N0, we
have

1

k!l!m!

∫ x

0

Bk(z)Bl(z)Bm(z)dz =

k+l∑
a=0

(−1)a
a∑

i=0

(
a

i

)
Ck−a+i,l−i,m+a+1(x)

(k − a+ i)!(l − i)!(m+ a+ 1)!
,

(6)

where Ck,l,m(x) = Bk(x)Bl(x)Bm(x)−BkBlBm.

In 2012, Hu, Kim and Kim [8] generalized the above results to obtain the
integral of the products of arbitrary many Bernoulli polynomials, in fact, they
proved the explicit formula for∫ x

0

Bk1(z)Bk2(z) · · ·Bkr (z)dz.
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Recently, using this integral, Cihat Dagli and Can [6] established a connection
between the reciprocity relations of sums of products of Bernoulli polynomials
and of the Dedekind sums.

In 2013, Liu, Pan and Zhang [9] extended Hu, Kim and Kim’s result by
establishing an explicit formula for the integral of the product of several Appell
polynomials. If a polynomial sequence {An(x)}, n ∈ N0, satisfies that

d

dx
An(x) = nAn−1(x),

then we say {An(x)} is an Appell sequence. The Bernoulli polynomials, Euler
polynomials, and the probablists’ Hermite polynomials are both Appell polyno-
mials. For Euler polynomials, their result is as follows.

Theorem 1.2 (Liu, Pan and Zhang [9, p. 682 (1.5)]).

1

k1! · · · kr!

∫ x

1/2

Ek1(z)Ek2(z) · · ·Ekr (z)dz

=
K∑

a=0

(−1)a
∑

i1+···+ir−1=a
0≤i1,...,ir−1≤a

(
a

i1, . . . , ir−1

)

×

(
Ekr+a+1(x)

(kr + a+ 1)!

r−1∏
j=1

Ekj−ij (x)

(kj − ij)!
− Ekr+a+1

2K+1(kr + a+ 1)!

r−1∏
j=1

Ekj−ij

(kj − ij)!

)
,

(7)

where K = k1 + · · ·+ kr and Euler numbers Ek = 2kEk(1/2).

Proposition 1.3. Let k1, . . . , kr ∈ N0, and let

Ik1,...,kr (x) =

∫ x

0

Ek1(z) · · ·Ekr (z)dz,

Ck1,...,kr
(x) = Ek1

(x) · · ·Ekr
(x)− Ek1

(0) · · ·Ekr
(0),

Ĩk1,...,kr
(x) =

1

k1! · · · kr!
Ik1,...,kr

(x),

C̃k1,...,kr (x) =
1

k1! · · · kr!
Ck1,...,kr (x).

Then we have

Ĩk1,...,kr (x) =

k1+···+kr−1∑
a=0

(−1)a
∑

j1+···+jr−1=a

(
a

j1, . . . , jr−1

)
× C̃k1−j1,...,kr−1−jr−1,kr+a+1(x).

Proof. This proposition is implied by the above Theorem, and it can also be
proved following the same line as [8, Proposition 1.4]. �

In this paper, we shall apply the above result on the integral of the product of
arbitrary many Euler polynomials to obtain several reciprocity relations between
the special values of Tornheim’s multiple series.
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First, we recall the history and some background on Tornheim’s series.
In 1950, Tornheim considered the double series T (p, q, r) which was defined

by

T (p, q, r) =

∞∑
m,n=1

1

mpnq(m+ n)r
, (8)

where p, q, r are nonnegative integers with p+r > 1, q+r > 1 and p+q+r > 2. In
particular, he showed that T (p, q,N−p−q) is a polynomial in {ζ(j) | 2 ≤ j ≤ N}
with rational coefficients, if N is an odd integer bigger than 3.

In 1958, Mordell [10] evaluated Tornheim’s double series at p = q = r = 2k,
where k is a positive integer. In 1985, Subbarao and Sitaramachandrarao [16]
extended Mordell’s results by considering the alternating analogue of (8) which
was defined by

R(p, q, r) =

∞∑
m,n=1

(−1)n

mpnq(m+ n)r
(9)

and

S(p, q, r) =
∞∑

m,n=1

(−1)m+n

mpnq(m+ n)r
. (10)

In 2003, Tsumura [18] considered the following partial Tornheim’s double series

Tb1,b2(p, q, r) =
∞∑

m,n=0

1

(2m+ b1)p(2n+ b2)q(2m+ 2n+ b1 + b2)r
, (11)

where b1, b2 ∈ {1, 2}. In particular, he wrote T1,1(p, q, r) as a rational linear
combination of products of Riemann’s zeta values at positive integers, when p
and q are odd positive integers with q ≥ 3 (see [18, Proposition 3.5]).

There exist the following two ways for the generalizations of above Tornheim’s
double series to the multiple cases:

T+
r (s1, . . . , sr; s) =

∞∑
p1,...,pr=0

1

(2p1 + 1)s1 · · · (2pr + 1)sr (2p1 + · · ·+ 2pr + r)s
(12)

and

T−
r (s1, . . . , sr; s) =

∞∑
p1,...,pr=0

1

(2p1 + 1)s1 · · · (2pr + 1)sr (−2p1 + · · ·+ 2pr + 1)s
. (13)

We set T+(s) = T+
1 (s; 0). Note that

T+(s) = (1− 2−s)ζ(s), (14)

where ζ(s) is the Riemann zeta function.
In 2004, Tsumura [19] obtained the following result on the special values

of T+
r (s1, . . . , sr; s) (for definition, see (12) above), so called Euler-Mordell-

Tornhein zeta values.
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Theorem 1.4 ([19, Theorem 1.1]). The Euler-Mordell-Tornheim zeta value

T+
r (k1, . . . , kr; k) with k ≥ 2

can be expressed as a rational linear combination of products of Euler-Mordell-
Tornheim zeta values of lower depth than r, when its depth r and its weight are
of different parity.

In this paper, by using the formula on the integral of products of arbitrary
many Euler polynomials, we obtain the following results on the relationships
between the special values of the above Tornheim’s multiple series (12) and
(13).

The beta values β(s) are defined by (see [2, p. 807, entry 23.2.21] and [19,
(2.1)])

β(s) =

∞∑
p=0

(−1)p

(2p+ 1)s
. (15)

According to Leibnitz’s test for alternating series, this is a series which converges
for all Re(s) > 0.

In this paper, we shall give an elementary proof of the following known result
(see [18, Example 3.7] and [19, Proposition 2.1]).

Proposition 1.5. For m ∈ N0, we have

β(2m+ 1) =
(−1)mπ2m+1

22m+2(2m)!
E2m,

where E2m are the Euler numbers (see (3) above).

We shall also give an elementary proof of the following known result (see
Shimura’s book [15, (4.93)]).

Proposition 1.6. For m ∈ N, we have

T+(2m) =
(−1)mπ2m

4(2m− 1)!
E2m−1(0).

For simplification of the notations, in what following, we shall denote by

Ẽk(x) =
1

k!
Ek(x).

Theorem 1.7. (1) For l,m, n ∈ N, we have the following reciprocity rela-
tion:

T−
3 (2l + 1, 2m+ 1, 2n+ 1; 1) + T−

3 (2m+ 1, 2l + 1, 2n+ 1; 1)

+ T−
3 (2n+ 1, 2l + 1, 2m+ 1; 1)− T+

3 (2l + 1, 2m+ 1, 2n+ 1; 1)

= (−1)l+m+nπ
2(l+m+n+2)

16

2l+2m∑
a=0

(−1)a+1

×
a∑

i=0

(
a

i

)
Ẽ2l−a+i(0)Ẽ2m−i(0)Ẽ2n+a+1(0).
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(2) For k, l,m, n ∈ N, we have the following reciprocity relation:

T+
3 (2l, 2m, 2n; 2k) + T+

3 (2k, 2m, 2n; 2l)

+ T+
3 (2k, 2l, 2n; 2m) + T+

3 (2k, 2l, 2m; 2n)

+ T−
3 (2n, 2l, 2m; 2k) + T−

3 (2n, 2k, 2m; 2l)

+ T−
3 (2n, 2k, 2l; 2m)

=
(−1)k+l+m+nπ2(k+l+m+n)

16

2k+2l+2m−3∑
a=0

(−1)a+1Ẽ2n+a(0)

×
∑

i1+i2+i3=a

(
a

i1, i2, i3

)
× Ẽ2k−1−i1(0)Ẽ2l−1−i2(0)Ẽ2m−1−i3(0).

Remark 1.1. There exists a preceding research which has some similar ideas
with the present work. That is, in some senses, Onodera [14] also connected the
Mordell-Tornheim zeta function with the integral of the product of Bernoulli
polynomials (see [14, p. 1468, Remark 2.2]). But his results are completely
different with us.

2. Proof of Proposition 1.5, 1.6 and Theorem 1.7

In this section, we shall prove our main results.

1) Proof of Proposition 1.5 and 1.6:
The Euler polynomials are represented by the following Fourier series ([2,

p. 805, entry 23.1.17 and 23.1.18] and [5, (14a) and (14b)])

E2m−1(x) = am

∞∑
p=0

cos(2p+ 1)πx

(2p+ 1)2m
, (16)

where 0 ≤ x ≤ 1 for m ∈ N, and

E2m(x) = bm

∞∑
p=0

sin(2p+ 1)πx

(2p+ 1)2m+1
, (17)

where 0 ≤ x ≤ 1 for m ∈ N, 0 < x < 1 for m = 0. Here

am = (−1)m
4(2m− 1)!

π2m
, bm = (−1)m

4(2m)!

π2m+1
. (18)

First, by (15) and taking x = 1/2 in (17), we have

β(2m+ 1) =
(−1)mπ2m+1

22m+2(2m)!
E2m,

where E2m are the Euler numbers (see (3) above), this is Proposition 1.5.
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Next, by putting x = 0 in (16), we obtain

T+(2m) =
(−1)mπ2m

4(2m− 1)!
E2m−1(0),

this is Proposition 1.6.

Remark 2.1. By (4), (16) and (17), we have the following integral formulas for
the Euler-Mordell-Tornheim zeta values

T+(2m+ 2n) =
2

aman
I2m−1,2n−1(1) =

(−1)m+nπ2m+2n

4(2m+ 2n− 1)!
E2m+2n−1(0)

and

T+(2m+ 2n+ 2) =
2

bmbn
I2m,2n(1) =

(−1)m+n+1π2m+2n+2

4(2m+ 2n+ 1)!
E2m+2n+1(0).

Remark 2.2. We setting r = 1 in (12), we obtain T+
1 (k1; k) = T+(k1 + k) for

k1, k ∈ N. Putting r = 2 in (12), we have T+
2 (k1, k2; k) (k1, k2, k ∈ N), and this

case has already been considered in [18].

2) Proof of Theorem 1.7 (1):
By (17), we obtain the expression

E2l(x)E2m(x)E2n(x)

blbmbn
=

∞∑
p,q,r=0

sin(2p+ 1)πx sin(2q + 1)πx sin(2r + 1)πx

(2p+ 1)2l+1(2q + 1)2m+1(2r + 1)2n+1
,

(19)
where l,m, n ∈ N.

From

4 sinA sinB sinC = sin(−A+B + C) + sin(A−B + C)

+ sin(A+B − C)− sin(A+B + C),

we have∫ 1

0

sin(2p+ 1)πx sin(2q + 1)πx sin(2r + 1)πxdx

=
1

2

[
1

(−2p+ 2q + 2r + 1)π
+

1

(2p− 2q + 2r + 1)π

+
1

(2p+ 2q − 2r + 1)π
− 1

(2p+ 2q + 2r + 3)π

]
.

(20)

By (13), (19) and (20), we have the following equality.

T−
3 (2l + 1, 2m+ 1, 2n+ 1; 1) + T−

3 (2m+ 1, 2l + 1, 2n+ 1; 1)

+ T−
3 (2n+ 1, 2l + 1, 2m+ 1; 1)− T+

3 (2l + 1, 2m+ 1, 2n+ 1; 1)

=
2π

blbmbn
I2l,2m,2n(1).

(21)
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And from Proposition 1.3, we also have

Ck1−a+i,k2−i,k3+a+1(1)

= ((−1)k1+k2+k3+1 − 1)Ek1−a+i(0)Ek2−i(0)Ek3+a+1(0)

=

{
−2Ek1−a+i(0)Ek2−i(0)Ek3+a+1(0) if k1 + k2 + k3 even

0 if k1 + k2 + k3 odd.

(22)

By Proposition 1.3 and (22), the integral Ĩ2l,2m,2n(1) can be expressed by

Ĩ2l,2m,2n(1) =

∫ 1

0

Ẽ2l(z)Ẽ2m(z)Ẽ2n(z)dz

=
2l+2m∑
a=0

(−1)a
a∑

i=0

(
a

i

)
C2l−a+i,2m−i,2n+a+1(1)

(2l − a+ i)!(2m− i)!(2n+ a+ 1)!

= 2
2l+2m∑
a=0

(−1)a+1
a∑

i=0

(
a

i

)
E2l−a+i(0)E2m−i(0)E2n+a+1(0)

(2l − a+ i)!(2m− i)!(2n+ a+ 1)!

= 2

2l+2m∑
a=0

(−1)a+1
a∑

i=0

(
a

i

)
Ẽ2l−a+i(0)Ẽ2m−i(0)Ẽ2n+a+1(0),

(23)

since 2l + 2m+ 2n ≡ 0 (mod 2). This is equivalent to

I2l,2m,2n(1) = 2(2l)!(2m)!(2n)!
2l+2m∑
a=0

(−1)a+1

×
a∑

i=0

(
a

i

)
Ẽ2l−a+i(0)Ẽ2m−i(0)Ẽ2n+a+1(0).

(24)

Finally by comparing (21) with (24), we obtain the following identity

T−
3 (2l + 1, 2m+ 1, 2n+ 1; 1) + T−

3 (2m+ 1, 2l + 1, 2n+ 1; 1)

+ T−
3 (2n+ 1, 2l + 1, 2m+ 1; 1)− T+

3 (2l + 1, 2m+ 1, 2n+ 1; 1)

= (−1)l+m+nπ
2(l+m+n+2)

16

2l+2m∑
a=0

(−1)a+1

×
a∑

i=0

(
a

i

)
Ẽ2l−a+i(0)Ẽ2m−i(0)Ẽ2n+a+1(0),

which is Theorem 1.7 (1).

3) Proof of Theorem 1.7 (2):
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Letting x = 1 in Proposition 1.3, we have the following equality:

Ĩ2k−1,2l−1,2m−1,2n−1(1) =
2k+2l+2m−3∑

a=0

(−1)a
∑

i1+i2+i3=a

(
a

i1, i2, i3

)
× ((−1)2k+2l+2m+2n−3 − 1)

× Ẽ2k−1−i1(0)Ẽ2l−1−i2(0)Ẽ2m−1−i3(0)Ẽ2n+a(0),

which is equivalent to

Ĩ2k−1,2l−1,2m−1,2n−1(1) = 2
2k+2l+2m−3∑

a=0

(−1)a+1Ẽ2n+a(0)

×
∑

i1+i2+i3=a

(
a

i1, i2, i3

)
× Ẽ2k−1−i1(0)Ẽ2l−1−i2(0)Ẽ2m−1−i3(0),

(25)

where k, l,m, n ∈ N.
From (16), we have

E2k−1(x)E2l−1(x)E2m−1(x)E2n−1(x)

akalaman

=
∞∑

p,q,r,s=0

cos(2p+ 1)πx cos(2q + 1)πx cos(2r + 1)πx cos(2s+ 1)πx

(2p+ 1)2k(2q + 1)2l(2r + 1)2m(2s+ 1)2n
.

(26)

The series on the right hand side converges uniformly for 0 ≤ x ≤ 1, thus can be
integrated term wise. Also notice that by integration of the terms from 0 and 1,
the series vanishes except p = q+r+s+1 or q = p+r+s+1 or r = p+q+s+1
or s = p+ q + r + 1 or p = q + r − s or q = p+ r − s or r = p+ q − s.

This is because

8 cosA cosB cosC cosD = cos(A+B + C +D) + cos(A+B + C −D)

+ cos(−A+B + C +D) + cos(−A+B + C −D)

+ cos(A−B + C +D) + cos(A−B + C −D)

+ cos(A+B − C +D) + cos(A+B − C −D).

Thus

akalaman
8

{T+
3 (2l, 2m, 2n; 2k) + T+

3 (2k, 2m, 2n; 2l)

+ T+
3 (2k, 2l, 2n; 2m) + T+

3 (2k, 2l, 2m; 2n)

+ T−
3 (2n, 2l, 2m; 2k) + T−

3 (2n, 2k, 2m; 2l)

+ T−
3 (2n, 2k, 2l; 2m)}

= I2k−1,2l−1,2m−1,2n−1(1).

(27)
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From (25) and (27) we have

T+
3 (2l, 2m, 2n; 2k) + T+

3 (2k, 2m, 2n; 2l)

+ T+
3 (2k, 2l, 2n; 2m) + T+

3 (2k, 2l, 2m; 2n)

+ T−
3 (2n, 2l, 2m; 2k) + T−

3 (2n, 2k, 2m; 2l)

+ T−
3 (2n, 2k, 2l; 2m)

=
8(2k − 1)!(2l − 1)!(2m− 1)!(2n− 1)!

akalaman

× 2

2k+2l+2m−3∑
a=0

(−1)a+1Ẽ2n+a(0)

×
∑

i1+i2+i3=a

(
a

i1, i2, i3

)
× Ẽ2k−1−i1(0)Ẽ2l−1−i2(0)Ẽ2m−1−i3(0).

(28)

Then we have the following reciprocity relation:

T+
3 (2l, 2m, 2n; 2k) + T+

3 (2k, 2m, 2n; 2l)

+ T+
3 (2k, 2l, 2n; 2m) + T+

3 (2k, 2l, 2m; 2n)

+ T−
3 (2n, 2l, 2m; 2k) + T−

3 (2n, 2k, 2m; 2l)

+ T−
3 (2n, 2k, 2l; 2m)

=
(−1)k+l+m+nπ2(k+l+m+n)

16

2k+2l+2m−3∑
a=0

(−1)a+1Ẽ2n+a(0)

×
∑

i1+i2+i3=a

(
a

i1, i2, i3

)
× Ẽ2k−1−i1(0)Ẽ2l−1−i2(0)Ẽ2m−1−i3(0),

which is Theorem 1.7 (2).
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