• 제목/요약/키워드: Euler polynomial

검색결과 31건 처리시간 0.021초

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

SOME RELATIONSHIPS BETWEEN (p, q)-EULER POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS POLYNOMIALS

  • KANG, JUNG YOOG;AGARWAL, R.P.
    • Journal of applied mathematics & informatics
    • /
    • 제37권3_4호
    • /
    • pp.219-234
    • /
    • 2019
  • We use the definition of Euler polynomials of the second kind with (p, q)-numbers to identify some identities and properties of these polynomials. We also investigate some relationships between (p, q)-Euler polynomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent polynomials by using the properties of (p, q)-exponential function.

Lucas-Euler Relations Using Balancing and Lucas-Balancing Polynomials

  • Frontczak, Robert;Goy, Taras
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.473-486
    • /
    • 2021
  • We establish some new combinatorial identities involving Euler polynomials and balancing (Lucas-balancing) polynomials. The derivations use elementary techniques and are based on functional equations for the respective generating functions. From these polynomial relations, we deduce interesting identities with Fibonacci and Lucas numbers, and Euler numbers. The results must be regarded as companion results to some Fibonacci-Bernoulli identities, which we derived in our previous paper.

복소연산이 없는 Polynomial 변환을 이용한 2차원 고속 DCT (Two dimensional Fast DCT using Polynomial Transform without Complex Computations)

  • Park, Hwan-Serk;Kim, Won-Ha
    • 전자공학회논문지CI
    • /
    • 제40권6호
    • /
    • pp.127-140
    • /
    • 2003
  • 본 논문은 2차원 Discrete Cosine Transform (2D-DCT)의 계산을 새로운 Polynomial 변환을 통하여 1차원 DCT의 합으로 변환하여 계산하는 알고리즘을 개발한다. 기존의 2차원 계산방법인 row-column 으로는 N×M 크기의 2D-DCT에서 3/2NMlog₂(NM)-2NM+N+M의 합과 1/2NMlog₂(NM)의 곱셈이 필요한데 비하여 본 논문에서 제시한 알고리즘은 3/2NMlog₂M+NMlog₂N-M-N/2+2의 합과 1/2NMlog₂M의 곱셈 수를 필요로 한다. 또한 기존의 polynomial 변환에 의한 2D DCT는 Euler 공식을 적용하였기 때문에 복소 연산이 필요하지만 본 논문에서 제시한 polynomial 변환은 DCT의 modular 규칙을 이용하여 2D DCT를 ID DCT의 합으로 직접 변환하므로 복소 연산이 필요하지 않다.

RESULTS ON THE ALGEBRAIC DIFFERENTIAL INDEPENDENCE OF THE RIEMANN ZETA FUNCTION AND THE EULER GAMMA FUNCTION

  • Xiao-Min Li;Yi-Xuan Li
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1651-1672
    • /
    • 2023
  • In 2010, Li-Ye [13, Theorem 0.1] proved that P(ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), Γ"(z)) ≢ 0 in ℂ, where m is a non-negative integer, and P(u0, u1, . . . , um, v0, v1, v2) is any non-trivial polynomial in its arguments with coefficients in the field ℂ. Later on, Li-Ye [15, Theorem 1] proved that P(z, Γ(z), Γ'(z), . . . , Γ(n)(z), ζ(z)) ≢ 0 in z ∈ ℂ for any non-trivial distinguished polynomial P(z, u0, u1, . . ., un, v) with coefficients in a set Lδ of the zero function and a class of nonzero functions f from ℂ to ℂ ∪ {∞} (cf. [15, Definition 1]). In this paper, we prove that P(z, ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), . . . , Γ(n)(z)) ≢ 0 in z ∈ ℂ, where m and n are two non-negative integers, and P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic functions of order less than one, and the polynomial P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1 variables v0, v1, . . . , vn. The question studied in this paper is concerning the conjecture of Markus from [16]. The main results obtained in this paper also extend the corresponding results from Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and Wang-Li-Liu-Li [23], respectively.

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Transverse Vibration of a Uniform Euler-Bernoulli Beam Under Varying Axial Force Using Differential Transformation Method

  • Shin Young-Jae;Yun Jong-Hak
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the application of techniques of differential transformation method (DTM) to analyze the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force. The governing differential equation of the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force is derived and verified. The varying axial force was extended to the more general case which was high polynomial consisted of many terms. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The accuracy and the convergence in solving the problem by DTM are discussed.

SEMI-CYCLOTOMIC POLYNOMIALS

  • LEE, KI-SUK;LEE, JI-EUN;Kim, JI-HYE
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.469-472
    • /
    • 2015
  • The n-th cyclotomic polynomial ${\Phi}_n(x)$ is irreducible over $\mathbb{Q}$ and has integer coefficients. The degree of ${\Phi}_n(x)$ is ${\varphi}(n)$, where ${\varphi}(n)$ is the Euler Phi-function. In this paper, we define Semi-Cyclotomic Polynomial $J_n(x)$. $J_n(x)$ is also irreducible over $\mathbb{Q}$ and has integer coefficients. But the degree of $J_n(x)$ is $\frac{{\varphi}(n)}{2}$. Galois Theory will be used to prove the above properties of $J_n(x)$.

복소연산이 없는 Polynomial 변환을 이용한 고속 2 차원 DCT (Fast two dimensional DCT by Polynomial Transform without complex operations)

  • Park, Hwan-Serk;Kim, Won-Ha
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1940-1943
    • /
    • 2003
  • 본 논문은 Polynomial 변환을 이용하여 2차원 Discrete Cosine Transform (2D-DCT)의 계산을 1차원 DCT로 변환하여 계산하는 알고리즘을 개발한다. 기존의 일반적인 알고리즘인 row-column이 N×M의 2D-DCT에서 3/2NMlog₂(NM)-2NM+N+M의 합과 1/2NMlog₂(NM)의 곱셈이 필요한데 비하여 본 논문에서 제시한 알고리즘은 3/2NMlog₂M +NMlog₂N-M-N/2+2의 합과 1/2NMlog₂M의 곱셈 수를 필요로 한다. 기존의 polynomial 변환에 의한 2D DCT는 Euler 공식을 적용하였기 때문에 복소 연산이 필요하지만 본 논문에서 제시한 polynomial 변환은 DCT의 modular 규칙을 이용하여 2D DCT를 ID DCT의 합으로 직접 변환하므로 복소 연산이 필요하지 않다. 또한 본 논문에서 제시한 알고리즘은 각 차원에서 데이터 크기가 다른 임의 크기의 2차원 데이터 변환에도 적용할 수 있다.

  • PDF

SOME IDENTITIES OF DEGENERATE GENOCCHI POLYNOMIALS

  • Lim, Dongkyu
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.569-579
    • /
    • 2016
  • L. Carlitz introduced higher order degenerate Euler polynomials in [4, 5] and studied a degenerate Staudt-Clausen theorem in [4]. D. S. Kim and T. Kim gave some formulas and identities of degenerate Euler polynomials which are derived from the fermionic p-adic integrals on ${\mathbb{Z}}_p$ (see [9]). In this paper, we introduce higher order degenerate Genocchi polynomials. And we give some formulas and identities of degenerate Genocchi polynomials which are derived from the fermionic p-adic integrals on ${\mathbb{Z}}_p$.