SEMI-CYCLOTOMIC POLYNOMIALS

KI-SUK LEE, JI-EUN LEE AND JI-HYE KIM

Abstract. The n-th cyclotomic polynomial $\Phi_n(x)$ is irreducible over $\mathbb Q$ and has integer coefficients. The degree of $\Phi_n(x)$ is $\varphi(n)$, where $\varphi(n)$ is the Euler Phi-function. In this paper, we define Semi-Cyclotomic Polynomial $J_n(x)$. $J_n(x)$ is also irreducible over $\mathbb Q$ and has integer coefficients. But the degree of $J_n(x)$ is $\frac{\varphi(n)}{2}$. Galois Theory will be used to prove the above properties of $J_n(x)$.

1. Introduction

Given a positive integer n, the integers between 1 and n which are coprime to n form a group with multiplication modulo n as the operation. It is denoted by \mathbb{Z}_n^* and is called the multiplicative group of integers modulo n. The Galois group $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$ of x^n-1 is isomorphic to \mathbb{Z}_n^* , where $\alpha = e^{\frac{2\pi}{n}i}$.

It is well-known that the *n*-th cyclotomic polynomial $\Phi_n(x)$ is an irreducible polynomial in $\mathbb{Z}[x]$. Here we give the following theorems about the *n*-th cyclotomic polynomials. Galois Theory will give an easy proof of the irreducibility of $\Phi_n(x)$.

Let U_n be the set consisting of all primitive n-th roots of unity in \mathbb{C} , the complex number field.

$$\Phi_n(x) = \prod_{a \in U_n} (x - a)$$

is said to be the n-th cyclotomic polynomial.

Theorem 1.1. If n is a positive integer, then $\Phi_n(x)$ is in $\mathbb{Q}[x]$.

Proof. Every Galois map in $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$ can be considered as a map from U_n to U_n which is injective and surjective. Since $\Phi_n(x)$ is fixed by every map in $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$, all coefficients of $\Phi_n(x)$ are in \mathbb{Q} .

Received September 5, 2015. Accepted November 14, 2015.

 $^{2010 \ \}mathrm{Mathematics} \ \mathrm{Subject} \ \mathrm{Classification}. \ 12\mathrm{D}05, \ 12\mathrm{E}05, \ 12\mathrm{F}05, \ 12\mathrm{F}10.$

Key words and phrases. n-th cyclotomic polynomial, semi-cyclotomic polynomial, irreducible polynomial.

In fact, the coefficients of $\Phi_n(x)$ are integers. [[3], Thoerem 4.1, V]

Theorem 1.2. If n is a positive integer, then $\Phi_n(x)$ is irreducible over \mathbb{Q} .

Proof. If $\Phi_n(x)$ is reducible in $\mathbb{Q}[x]$, then $\Phi_n(x) = h(x) \cdot k(x)$ in $\mathbb{Q}[x]$ with deg h(x) > 0, deg k(x) > 0. We may assume that h(x) has $(x - \alpha)$ as a factor and misses $(x - \alpha^r)$, with $r \neq 1$, (n, r) = 1. Then $h(x) = (x - \alpha) \cdot h^*(x)$ and $k(x) = (x - \alpha^r) \cdot k^*(x)$.

Let ϕ_i in $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$ be the map such that $\phi_i(\alpha) = \alpha^i$, for an integer i. There exists ϕ_r in $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$ which sends $(x - \alpha)$ to $(x - \alpha^r)$. Then $h(x) \in \mathbb{Q}[x]$ is not fixed by ϕ_r . This is a contradiction.

2. Semi-cyclotomic polynomial

In this chapter, we define semi-cyclotomic polynomial, $J_n(x)$. We prove that the coefficients of $J_n(x)$ are integers and $J_n(x)$ is irreducible in \mathbb{Q} .

If (n,r) = 1, then (n, n - r) = 1.

So Z_n^* can be written as $\{r_1, r_2, \cdots, r_k, -r_k, \cdots, -r_2, -r_1\}$, where $k = \frac{\varphi(n)}{2}$ and $(n, r_j) = 1$, for $j = 1, 2, \cdots, k$.

Let $\alpha = e^{\frac{2\pi}{n}i}$. Then α is a primitive *n*-th root of unity in \mathbb{C} .

Let $a_1 = \alpha^{r_1} + \alpha^{-r_1}, \dots, a_k = \alpha^{r_k} + \alpha^{-r_k}$.

We define semi-cyclotomic polynomial as

$$J_n(x) = (x - a_1)(x - a_2) \cdots (x - a_k).$$

Theorem 2.1. $J_n(x)$ is in $\mathbb{Q}[x]$.

Proof. We may write the Galois group of $x^n - 1$ as

$$Gal_{\mathbb{Q}}\mathbb{Q}(\alpha) = \{\phi_{r_1}, \phi_{r_2}, \cdots, \phi_{r_k}, \phi_{-r_k}, \cdots, \phi_{-r_1}\}$$

where $\phi_{r_i}(\alpha) = \alpha^{r_j}$.

Let $S = \{a_1, ..., a_k\}$. Since $H = \{r_1, -r_1\} = \{1, -1\}$ is a subgroup of \mathbb{Z}_n^* and $\{r_k, -r_k\} = r_k\{1, -1\}$ are cosets of H, every Galois map ϕ_{r_j} can be considered as a function from S to S, which is injective and surjective. This implies $J_n(x)$ is fixed by $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$. Therefore $J_n(x)$ is in $\mathbb{Q}[x]$.

Theorem 2.2. $J_n(x)$ is in $\mathbb{Z}[x]$.

Proof. Every coefficients of $J_n(x)$ can be written as $k_0 + k_1\alpha + \cdots + k_m\alpha^m$, where k_i 's are integers. Since the coefficients of $J_n(x)$ are rational, they are integers because of the following Lemma.

Lemma 2.3. If A is a rational number which can be written as $k_0 + k_1 \alpha + \cdots + k_m \alpha^m$ (where k_i 's are integers), then A is an integer.

Proof. $\mathbb{Q}(\alpha)$ is a vector space over \mathbb{Q} with dimension $\varphi(n)$. We may choose

$$\left\{1, \alpha, \alpha^2, \cdots, \alpha^{\varphi(n)-1}\right\}$$

as a basis. Then $\Phi_n(x)$ is a monic polynomial in $\mathbb{Z}[x]$ and α is a root of $\Phi_n(x)$. Since degree of $\Phi_n(x)$ is $\varphi(n)$, we can replace $\alpha^{\varphi(n)}$ with lower power terms. So A can be written as

$$A = m_0 + m_1 \alpha + m_2 \alpha^2 + \dots + m_t \alpha^t,$$

where $t = \varphi(n) - 1$ and m_i 's are integers. Since $\{1, \alpha, \alpha^2, \cdots, \alpha^{\varphi(n)-1}\}$ is a basis, the above expression of A is unique. Therefore if A is a rational number, every m_i 's must be zero except m_0 . So A is an integer.

Theorem 2.4. $J_n(x)$ is irreducible over \mathbb{Q} .

Proof. Note that $a_j = 2\cos(\frac{2\pi}{n}r_j)$ for $j = 1, 2, \dots, k$. This implies a_1, \dots, a_k are all distinct.

If $J_n(x)$ is reducible, then $J_n(x) = h(x) \cdot k(x)$ in $\mathbb{Q}[x]$ with $\deg h(x) > 0$, $\deg k(x) > 0$. We may assume that h(x) has $(x - a_1)$ as a factor and misses $(x - a_j)$, with $j \neq 1$. Then $h(x) = (x - a_1) \cdot h^*(x)$ and $k(x) = (x - a_j) \cdot k^*(x)$. There exists ϕ_{r_j} in $Gal_{\mathbb{Q}}\mathbb{Q}(\alpha)$, which sends $(x - a_1)$ into $(x - a_j)$. Then $h(x) \in \mathbb{Q}[x]$ is not fixed by ϕ_{r_j} , which is a contradiction.

3. Applications

We may use $J_n(x)$ to prove the irrationality of some cosine function values. Also impossibility of trisection of 60° will be proved.

Theorem 3.1. If $\varphi(n) > 2$ and (n,k) = 1, then $\cos(\frac{2\pi k}{n})$ is not a rational number.

Proof. Let $a_k = \alpha^k + \alpha^{-k}$ for (n,k) = 1, then $a_k = 2\cos(\frac{2\pi k}{n})$. Since the irreducible polynomial $J_n(x)$ has a_k as a root, $J_n(x)$ is the minimal polynomial of $2\cos(\frac{2\pi k}{n})$ over \mathbb{Q} .

If $\varphi(n) > 2$, the degree of $J_n(x)$ is greater than 1. This implies $\cos(\frac{2\pi k}{n})$ is not a rational number.

Theorem 3.2. An angle of 60° cannot be trisected by straight edge and compass.

Proof. $2\cos 20^{\circ}$ is a root of $J_{18}(x)$. The degree of $J_{18}(x)$ is $\frac{\varphi(18)}{2} = 3$. Since 3 is not a power of 2, $2\cos 20^{\circ}$ is not a constructible number. [[2], Theorem 15.9]

References

- [1] J. R. Bastida and R. Lyndon, *Field Extensions and Galois Thory*, Encyclopedia of Mathmatics and Its Application, Addison-Wesley Publishing Company (1984).
- [2] T. W. Hungerford, Abstract Algebra An Introduction, Brooks/Cole, Cengage Learning (2014).
- [3] S. Lang, Algebra, Addison-Wesley Publishing Company (1984).
- [4] P. Ribenboim, Algebraic Numbers, John Wiley and Sons Inc (1972).

Ki-Suk Lee

Department of Mathematics Education, Korea National University of Education,

Cheongjusi, Chungbuk 363-791, Republic of Korea.

E-mail: ksleeknue@gmail.com

Ji-Eun Lee

Myogok Elementary School,

Gangdonggu, Seoul 134-805, Republic of Korea.

E-mail: dlwldms818@gmail.com

Ji-Hye Kim

Department of Mathematics Education, Korea National University of Education,

Cheongjusi, Chungbuk 363-791, Republic of Korea.

E-mail: hyekj83@naver.com