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SEMI-CYCLOTOMIC POLYNOMIALS

Ki-Suk Lee, Ji-Eun Lee and Ji-Hye Kim

Abstract. The n-th cyclotomic polynomial Φn(x) is irreducible
over Q and has integer coefficients. The degree of Φn(x) is ϕ(n),
where ϕ(n) is the Euler Phi-function. In this paper, we define Semi-
Cyclotomic Polynomial Jn(x). Jn(x) is also irreducible over Q and

has integer coefficients. But the degree of Jn(x) is ϕ(n)
2

. Galois
Theory will be used to prove the above properties of Jn(x).

1. Introduction

Given a positive integer n, the integers between 1 and n which are co-
prime to n form a group with multiplication modulo n as the operation.
It is denoted by Z∗

n and is called the multiplicative group of integers
modulo n. The Galois group GalQQ(α) of xn − 1 is isomorphic to Z∗

n,

where α = e
2π
n
i.

It is well-known that the n-th cyclotomic polynomial Φn(x) is an
irreducible polynomial in Z[x]. Here we give the following theorems
about the n-th cyclotomic polynomials. Galois Theory will give an easy
proof of the irreducibility of Φn(x).

Let Un be the set consisting of all primitive n-th roots of unity in C,
the complex number field.

Φn(x) =
∏

a∈Un

(x− a)

is said to be the n-th cyclotomic polynomial.

Theorem 1.1. If n is a positive integer, then Φn(x) is in Q [x].

Proof. Every Galois map in GalQQ(α) can be considered as a map
from Un to Un which is injective and surjective. Since Φn(x) is fixed by
every map in GalQQ(α), all coefficients of Φn(x) are in Q.
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In fact, the coefficients of Φn(x) are integers. [[3], Thoerem 4.1, V]

Theorem 1.2. If n is a positive integer, then Φn(x) is irreducible
over Q.

Proof. If Φn(x) is reducible in Q [x], then Φn(x) = h(x) · k(x) in
Q [x] with deg h(x) > 0, deg k(x) > 0. We may assume that h(x) has
(x − α) as a factor and misses (x − αr), with r 6= 1, (n, r) = 1. Then
h(x) = (x− α) · h∗(x) and k(x) = (x− αr) · k∗(x).

Let φi in GalQQ(α) be the map such that φi(α) = αi, for an integer
i. There exists φr in GalQQ(α) which sends (x− α) to (x− αr). Then
h(x) ∈Q [x] is not fixed by φr. This is a contradiction.

2. Semi-cyclotomic polynomial

In this chapter, we define semi-cyclotomic polynomial, Jn(x). We
prove that the coefficients of Jn(x) are integers and Jn(x) is irreducible
in Q.

If (n, r) = 1, then (n, n− r) = 1.
So Zn

∗ can be written as {r1, r2, · · · , rk,−rk, · · · ,−r2,−r1}, where
k = ϕ(n)

2 and (n, rj) = 1, for j = 1, 2, · · · , k.
Let α = e

2π
n
i. Then α is a primitive n-th root of unity in C.

Let a1 = αr1 + α−r1 , · · · , ak = αrk + α−rk .
We define semi-cyclotomic polynomial as

Jn(x) = (x− a1)(x− a2) · · · (x− ak).

Theorem 2.1. Jn(x) is in Q [x].

Proof. We may write the Galois group of xn − 1 as
GalQQ(α) = {φr1 , φr2 , · · · , φrk , φ−rk , · · · , φ−r1} ,

where φrj (α) = αrj .
Let S = {a1, ..., ak}. Since H = {r1,−r1} = {1,−1} is a subgroup

of Z∗
n and {rk,−rk} = rk {1,−1} are cosets of H, every Galois map

φrj can be considered as a function from S to S, which is injective and
surjective. This implies Jn(x) is fixed by GalQQ(α). Therefore Jn(x) is
in Q [x].

Theorem 2.2. Jn(x) is in Z [x].

Proof. Every coefficients of Jn(x) can be written as k0 + k1α+ · · ·+
kmαm, where ki’s are integers. Since the coefficients of Jn(x) are ratio-
nal, they are integers because of the following Lemma.
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Lemma 2.3. If A is a rational number which can be written as
k0 + k1α+ · · ·+ kmαm(where ki’s are integers), then A is an integer.

Proof. Q(α) is a vector space over Q with dimension ϕ(n). We may
choose {

1, α, α2, · · · , αϕ(n)−1
}

as a basis. Then Φn(x) is a monic polynomial in Z [x] and α is a root of

Φn(x). Since degree of Φn(x) is ϕ(n), we can replace αϕ(n) with lower
power terms. So A can be written as

A = m0 +m1α+m2α
2 + · · ·+mtα

t,

where t = ϕ(n)−1 and mi’s are integers. Since
{
1, α, α2, · · · , αϕ(n)−1

}
is

a basis, the above expression of A is unique. Therefore if A is a rational
number, every mi’s must be zero except m0. So A is an integer.

Theorem 2.4. Jn(x) is irreducible over Q.

Proof. Note that aj = 2 cos(2πn rj) for j = 1, 2, · · · , k. This implies
a1, · · · , ak are all distinct.

If Jn(x) is reducible, then Jn(x) = h(x) ·k(x) in Q [x] with deg h(x) >
0, deg k(x) > 0. We may assume that h(x) has (x − a1) as a factor
and misses (x − aj), with j 6= 1. Then h(x) = (x − a1) · h∗(x) and
k(x) = (x − aj) · k∗(x). There exists φrj in GalQQ(α), which sends
(x− a1) into (x− aj). Then h(x) ∈Q [x] is not fixed by φrj , which is a
contradiction.

3. Applications

We may use Jn(x) to prove the irrationality of some cosine function
values. Also impossibility of trisection of 60◦ will be proved.

Theorem 3.1. If ϕ(n) > 2 and (n, k) = 1, then cos(2πkn ) is not a
rational number.

Proof. Let ak = αk + α−k for (n, k) = 1, then ak = 2 cos(2πkn ). Since
the irreducible polynomial Jn(x) has ak as a root, Jn(x) is the minimal
polynomial of 2 cos(2πkn ) over Q.
If ϕ(n) > 2, the degree of Jn(x) is greater than 1. This implies cos(2πkn )
is not a rational number.

Theorem 3.2. An angle of 60◦ cannot be trisected by straight edge
and compass.
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Proof. 2 cos 20◦ is a root of J18(x). The degree of J18(x) is
ϕ(18)

2 = 3.
Since 3 is not a power of 2, 2cos20◦ is not a constructible number. [[2],
Theorem 15.9]
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