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Abstract

This paper develops a novel algorithm of computing 2 Dimensional Discrete Cosine Transform
(2D-DCT) via Polynomial Transform (PT) converting 2D-DCT to the sum of 1D-DCTs. In
computing NxM size 2D-DCT, the conventional row-column algorithm needs 3/2NMlog ,(NM)
—2NM+ N+ M additions and 1/2NMiog,(NM) multiplications, while the proposed algorithm needs
3/2 NMlog ;M + NMlog,N - M— N/2+2 additions and 1/2NMlog ,M multiplications The previous
polynomial transform needs complex operations because it applies the Euler equation to DCT. Since
the suggested algorithm exploits the modular regularity embedded in DCT and directly decomposes
2D DCT into the sum of 1D DCTs, the suggested algorithm does not require any complex
operations.
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producing excellent spatial frequency of irnages[l].
Since, the amount of 2-D data is square of 1-D data
size, an algorithm for a fast 2D-DCT should reduce
the complexity of computing DCT itself as well as
the number of two-dimensional calculations. The
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based algorithms were
reported to offer more savings on the required
number of operations for two-dimensional DCT in

4 Compared with the row-column methodm,

polynomial  transform(PT)

Polynomial transforms (PT) require only one half of
the number of multiplications and a smaller number
of additions.
have the greatest potential toward lowest arithmetic
complexity.

The initial use of polynomial transform for a 2

Therefore, the polynomial transform

dimensional calculation was made by Nussbaumer et
a®® 0 as to compute 2D cyclic convolutions. Their
approach can be considered as a generalization of 2D
Fourier transform in view of polynomial theory. The
approaches of applying the polynomial transform for
computing 2D-DCT were followed by Guillemot et
al, Feig et al, Cho et al and so on ([3,4,7]). Al
these algorithms use the FEuler equation and the
symmetry of DCT kernels and transform the DCT to
a z-transform polynomial. The algorithms then apply
a polynomial transform to convert ZD-DCT to the
sum of 1D-DCTs. Although the algorithms reduce
the half of multiplications compared to the row-
column computation, they require the complex
calculation due to the Euler equation. In addition, the
previous algorithms treat only the
dimensions which implies that the algorithms may
that different

same  size

not support applications require
dimensional sizes.

In this paper, we present a novel 2D fast Discrete
Cosine Transform using polynomial transform free of
complex number computations. Fig. 1 shows the
diagram for overall 2D-DCT computation processes
via polynomial transform. Instead of using the Euler
equation, we exploit the modular regularity embedded
in DCT in order to directly decompose 2D-DCT into
1D-DCT. The conventional fast algorithms of 2D-
DCT process have no relations between its row and
column. These independent processes can be related
with each row and column by module operation, and
is subordinated to

index. The dependency of row

then row (or column) index

colum (or row)

(444)
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subordinated on column, means that row indexes
have the overlapped factors of column. The overlap
factors are the twiddle factors for colurm index and
those common factors can be compounded into one
dimensional factor. This representation of 2D-DCT
makes the series of polynomial and transform for
row is acquired in the process of transform for
Then this
representation has the symmetry, periodicity and fast
the
suggested polynomial transform does not require the
Also, the
polynomial transform does not assume the same
dimensional sizes so that the presented 2D-DCT can
be N<xM image data where

N=2", M=2" for integer nm.

column at a time polynormial

polynomial transform  algorithm.  Therefore,

complex  computations. suggested

applicable  to

The remainder of this paper is organized as
follows. Section I describes the 2D-DCT obtained
by the rearrangement of input signal on spatial
domain. In Section I, 2D-DCT is represented on
polynomial domain, which induces the suggested
polynomial transform. In  Section IV, the fast
algorithm is derived from the polynomial transforms
presented in Section IM. In this section, we will
explain the fast algorithm by showing a certain
symmetry in the suggested polynomial transform

Finally, we reach the conclusion in Section V.

Fast polynamial
algorthm

i)

083k 2D-FDCT-I #A ¢ A

a7 1. veaHske
A M=
Fig. 1. Abstract diagram of 2D-FDCT-II via poly—

nomial transform.
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O. Decomposition of 2D-DCT into
1D-DCTs

Generally, if the 2 dimensional computations is
converted to sums of one dimensional computation,
the muiltiplications of two dimensional computations
1s reduced almost by half. 2D DCT can be converted
to sums of 1D-DCT by converting the production of
DCT kemels in 2D DCT to a Cosinse through the
trigonometric formulae. For the converted form to
construct the 1D-DCT, the Cosine derived by the
trigonometric formulae must sustain the DCT kernel.
In order for the cosine to sustain the DCT kernel,
the input matrix needs to be re-arranged while
deriving a cosine through the trigonometric formulze.
In this section, we explain the re-ordering procedure
for representing 2D-DCT to sums of 1D-DCTs.

The 2D-DCT-II of the input sequences x(n, m) is
defined by

N-1 M=1
Xk, D=2 x(n.m)cosM
nw=0 m=0 2N
oS 7r§2751]‘-;12! )
k=0,1,-,N—-1; [=0,1,--,M—1

The constant scaling factors in the DCT definition
are ignored for simplicity. We assume that M and N
are powers of 2 and M=N. We can write N=2'
and M=2/N, where >0 and J>0, respectively.

In (1), the two dimensional kemel production

7(2n+ Dk | m(2m+1)1
s N cos 2

to a cosine through the trigonometric formulae.

co can be converted

However, since the phase of the cosine is expressed
with 2-dimensional indices, n, m, the cosine does not
form the DCT kemnel. In order for the converted
cosine to form the DCT kernel, we develop a module
operation that transforms the 2-dimensional indices
into a one-dimensional DCT. Before applying the
module operation, we also need a index re-ordering

(445)
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process preventing the phase inversion occurred
during the module operation. The following explains
the index reordering process that is performed by
changing post/pre order to even/odd order.

x(n, m) can be decomposed into re-ordered matrix

y(n, m) such as,

W(n, m)=x2n, 2m)
YN=1=n,m)=x2n~+1,2m)

yn, M—1-m)=x(2u,2m+1)
WN=1—n,M—1—m)=x2n+1,2m+1)

@

where

n=0,1,, Nj2—1
m=0,1,-, M/2—1,

Then
N=1M=1
Xk D=2 y(n.m)cos—L(i”—*iHi
=0 m=0 2N
. cos 7r§472nﬂ-4|—12[ 3)
k=0,1,,N—1, [=0,1,,M~1.

FigZ shows index re-ordering of x(n, m) for N=4,
M=4.

a3 2, ddxd o A
Fig. 2. Matrix re-ordering by index.

Using the trigonometric formulae, (3) can be

computed by X(k, ) =—§[A<k, D+ Bk, D],
where

1M1

W(n, m)
1]

N
Ak, D= 7:

0

m
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) zdn+ Dk, _aldm+ 1)
cos e B
k=0,1,--,N—-1 [=0,1,-,M~-1
and
N—~1 M~1
B(k, D= ﬁge :éo ¥ n, m)
) rdn+ Dk _aldm+ 1)
cos [ AL i B
k=0,1, N—1, [{=0,1, M—1

In (4 and (5}, since the cosine has the two
dimensional ndices, nm, Akl and B(k}) do not
sustain the 1D-DCT. So, if we let the cosine he the
DCT kernel, AlkD) and Blk,D also becomes the sums
of 1ID-DCTs. In the following, we develop a module
operation that transforms the two dimensional indices
to a one-cimensional index so as for the cosine to
sustain DCT kernel.

Consider (AxB) mod N for two different number
A, B. If one of the two number A is coprime with
N, the range values of B, that is, 0,--N-1,
one~to~one corresponds to those of (AxB) mod N
fref xxxl. From this observation, we develop a
module operation letting the index n be expressed in
(dm+1) wmodule form  This modue operation
transforms two indices n, m into an one-dimensional
index.

Now, we define p(m) as p(m)=[(4p+ L)m+ p]
mod N, then

4p(m) +1=(dm+ 1)X4p+ 1) mod 4N
wherve p=0,1, - N—1, m=0(,1,-- M—-1.

Through the following lemma 1, p(m) can also
replace z in more different order with .

Lemima 1 :

A={(n,mI0<nsN~1; O0sm<M-—1}
B={(p{m), ml0<psN—1; 0<m<M—1)

Then A=B
progf © Let [p(m),m] and [p (w'),m'] be two

#HEE A
elements in B If they are equdl, then
olm)=p(m’), m=mw'.
From the definition of p(m), we have
4p+ Dm+p=4p" + Lm+ 5 mod N
Hence
(4m+1)(p— )= 0 mod .

Since 4m+1 and N are co-prime with each other,
p=17p", which
concludes that the elements in B are different from

we have p=p modN Therefore,

each other and # can be replaced via #(m). |

Fig 3 shows module re-ordering.

y{p(m),m)

y{n,m)

28 3 module G4t plm)ell o} E e
Fig. 3. Matrix re~ordering by module operation p(m).

By plugging p(m2) into (4) and (5), we obtain (6}
and (7} as bottom.
Nt M-1 g QS 2 2
Ak D) = ;ﬁ y:;oy(p(m),m)cos[ a4 gzN+1 k
+-ldmt L] ®

- Ig ig:y(ﬁ(m),m)cos[ a(dm+ 2@4D+1)k

+ -t DI ,2?32;1 l] = iﬁ; :E;:y(b(m).m)'

COS[ {dm+ 1)(22f A(Jzip+1)k+ ) }
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Bk D = Nzil M~1y(p(m),m) COS[‘EMLM
=0 m=0 2N
~-Sdmt D] @

_ RS a(dm+1)(4p+ Dk

& mz_}gy(p(m),m)cos{ 2N

Bl P IRUCOREE
2(dm+ 1IN Yp+ 1)k~ 1)

| |

M

In {6) and (7), we can define the common factor of

cosine such as

V,(h= jfz:;y(p(m),m)cos[%m] &)

for p=0,1,~,N—1 j=0,1, -, M~1.

Through re-ordering index of w(p (m),m), V ,(j) in
{8 becomes 1D-DCT. To re-ordering index of

y(p (m),m), we define F,{ m) such as

3, (2m)y = y(p(m), m)
Y, @t D=y p(M~1~m),M—1~m)

where m=0,1,-, M/2—1 (15)

Fig.4 shows re-ordering of wlp (m),m) to F,( m).

N

12

Al

/w

\

—_
<
Vi

N

T2 4. ¥ (m),m)el gt Afefad
Fig. 4. the re-ordering of ylw (m),m).

This reordering is similar to index re~ordering of
(2). V() can be expressed into one
dircensional DCT for each p.

Now,

(447)
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where p=0,1,-  N~L;=0,1,, M-1 .

Fig. 5 shows the diagram of Eq.(9) for each p in

TOWS.
7 (m) V(5
e I
—
I 6 %\‘b _
1he -
g \\ 1D-DCT-II atp=0
2 S —_
SR
O ID-DCT-I at p=1
BN ;\; =S
N ID-DCTIT atp=2
3
\\ N S o~
\\ 12
\ 1D-DCT-IT at p=3

oz 5. 7 e g 1ID-DCTE
Fig. 5. 1D-DCTs for each row.

Ak D and B(k ) can also be factored with
V (i) as follows
=1
Alk, D= :;D V12 X4p+ Dk+ 1 (1
Nv
Bk, D= ;;Vp[zf@pﬂ)k— i (12)
for k=40,1,- ,N-1, =01, -, M-1.

In order that ZD-DCT Xk becomes the sums of
1D-DCTs, A(k D and Bk H in (10) and (11)
should be the sum of V() for p . This indicates

that V ,(27(dp+ 1Dk~ D in (10} and (11) numst be
converted to V(5. The following section explains
the procedure converting V ,(2/U4p+1k-0 to
V {7 by polynomial transform.

If. Polynomial Representation of
2D-DCT

As mentioned in previous section, in order for
Alk D and Bk D to be the sums of 1D-DCT,
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V {(27(4p+ 1Dk—1) must be transformed to V ,()).
Transforming the index 27(4p+1)k—1 to j implies
re-ordering V (2 /(4p+ 1Dk—0) to V(). This
reordering makes use of the periodic properties of
V(9.
developed by a polynomial’s module operation. Thus,
in this section, we develop a polynomial to make use
of the module
polynomial’s coefficients are V ,(;) and the order of

The reordering process can be easily

polynomial’s operations. The
the polynomial’s terms indicates where V (/) is on

the transform domain.

Both A(k /) and B(k /) contains V,(-), and
V,(-) is periodic. So, A(k, /) and B(k, ) can be
related through the periodic properties of V().
Once A(k, ) and B(k, 1) are related, a polynomial
calculating A(k, ) and B(k, ) simultaneously can
be derived.

The periodic properties of V ,(j) are

VG2 =(—1) “V ()
V,2M—)= —V (), and (13)
V(M) =0, where j=0,1,-,M—1

Based on the periodic properties of V (),

Alk2M—1D = igolvp[zf(4p+1)k+2M— |
=- iiole[Zj(4ﬁ+1)k— 1 (14)
=—B(k, 1)

and, A(k,0)=B(%,0), A0, D= B(0, ). (15)

In order to transform the index 2 “(4p+1)k—1 to
i, V,(274p+1Dk—1 must be reordered. The
reordering process can be easily developed by a
polynomial’s module operation. Thus, we define a
polynomial B, (z) with respect to column index I
which permits the module operation, such as

M-1 2M—1
Bi= % BlkDz'~ 3 Ak2M—Dz'.  (16)

b

DCT rEfE
By substituting (10) and (14) in (16),

By o= S5V @ Upr 1) Dz an
K= fgo pZ'o 4 4 2

In (07), if V,(2/Up+Dk—1) is V (1), Bi(2) is
the sum of 1D-DCT. For that reason, to exchange
the index of V ,( +), 2’(4p+1)k—into j, we have
to re-ordering V ,( - ). This re-ordering process can
be explained by the periodic property of polynomial
module operation. The following theorem justifies the
periodic properties in polynomial module operations.

In (18), if V,(2/(4p+Dk—1) is transformed to
V,(4), Bi(2) constructs the sums of 1D-DCT. The
following theorem justifies the periodic properties in
polynomial module operations.

Theorem 1:
If g is a codfficdent of z’ in a polynomial

g(2)= E)lgj -2 then (g(2) - z29)mod(z¥+1)=

! [ -N J (j+ L) modN .
Z‘b (-1 gz UTDmdN yphere an integer
~

Lis 0OSL<N-1.

proof Since g, Z=g ;2" " "(2'+1)—g,;27""

) _ i~ 1 .
(8 - 2 mod (2 1+1)s{ g2’ where 21 g
g2 where j<I
For an integer L that is 0< L < N—1,
(g(2) - z2%)mod (2 ¥+1)

N-1 A
E( 2) g z”L)mod(zN-i—l)
~

N

= g‘bl{(g,- - 27 Hymod (2 + 1)}
e

L—1

= sz {(g; - & F)mod (27 + 1)}

~.

+j:Ng_lL{ (g]_ . Zj+L)l’nOd (ZN+ 1)}

from (18)

N-—L-1 N=1
— i+ L oy . sitL-N
= g;" 2 + , T8 2

Zb ,:§A

=
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L-1 . ON=1 ;
— ) .
= ;Zb —&-LsnN R T ]; 8j-L" %

~—gy2t T gt

- 0_ 1_
=" 8N-L%F T EN-L+1R

+g12L+l+...+gN_L_IZN—1

- 5D el

This proves the theorem 1. 1

(j+ L) mod N

Using Theorem 1, we derive that B ,(z) becomes
a module operation and then turns out to be the sum
of V,(5).

V(2 4p+Dk—Dz!

k(Z)— Z =
2M—

Eﬁo

Since 1< 2M,

V 27(4p+ Dk— Dz !

Ii Zo(_l) ( | V (27U4p+1k— Dz [ mea M

Since V,{(j) is 2M-periodic with respect to j,
V,()=V (jimod2). Let j=(I—L)mod2M, where
L=2/(4p+1)k Then V ,(I—L)= V,((I—L)mod
2M)= V(5. By definition of j, the
{/}={0,1,-,2M—1} one-to-one maps to the
{7/}={2M—-L2M—L+1,-,0,1,,2M
I=(+L)mod2M is also trivial. From

index set

index set
—L—-1}
these observations, we can change B ,(z) in module

form such as

B() N-12M~-1
#27= PZO ;ZO

o .
(=D ‘L w CV (j)z UF e DR meazit
by Theorem 1,
— ] oM — s
Z Z V()2 /T Ha Demod (22 1), (19)

In computing Eq.(19), step-by-step approach is
much easier than direct computation. For this

purpose, we factorize B ,(2) as following;

HEWOBCHE F6H 133

%pk]z Yemod (22 + 1)

N—1
B2)=] Z U

=Cy2)z ¥ mod(z* +1), (20)
where
-1 )
U,(2)= ! V ,(Dz’'mod (22 +1)
~
2M—-1
= vV, (Dz’ 2D
=0
N—
C(2)= Z U ,(2) 2 *mod (2% +1) (22)
k=0,1,,N—1; 2=2%""mod (2 +1).

U,(z) is the polynomial whose coefficients are
1ID-DCT values of the pth row. The jth term’s
coefficient is equivalent to the value of jth DCT. For
actual computations, V,{j) only for j=0~ M —1
are calculated and V,(j) for j= M ~2M —1 use
the calculated values from the properties of V,(4),
Fig. 6 shows the procedure of generating U,(z)
from V,(4) in eq.21).

z-order

38 6. Y v,6)el &% oh
Fig. 8. U(2): the polynomial via V,(j).

The coefficients of C ,(z) are the row directional
sums of U ,(2)'s coefficients which are reordered

along each column direction. The orders of =z
represent the order of reordering on the row. The
coefficients of C ,(2) are 2D-DCT values of the

reordered 2D matrix. That is, 2D-DCT values of the
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original input 2D matrix are obtained by reordering
the C ,(2)'s coefficients to spatial domain. Further-
more, since C ,(z) forms the polynomial transform, a
fast alogrithm for calculating C ,(z) is available.
Fig.7 shows the process of polynomial transform in
Eq(22). In Fg7, Cyz) is the
polynomials, U ,(z), and each polynomial has 8

sum of 4

coefficients. So, a polynomial C 4(2) is computed by
8x3 additions. Therefore, C ,(z), the polynomial
Uyz) (p=0123) needs 4x8x3
additions. In general, polynomial transform requires
N-2M-(N—1) additions. But the number of
additions are reduced by fast algorithm, which will
be explained in next section.

transform for

U, (2 G(2)
nl

U@ | G@
Wi

UG | ¢

N W

U7.(2) e H
@ ol @

UP(Z) polynomial transform > C;C(Z)

a7 7. o) wsk
Fig. 7. the Polynomial Transform v, ()~ ZT—c.(x).

)
xz' mod(zg +1)
)

xz? mod(z5 +1

| Cz(z) xz? mv:ud(z3 + 1)

Clo)=¢+az +a7 +os +e s’ +67 v +67
A mod +1)= -2 ¢, vzt ez teF FoF Fo +eg = Bz)

18 8. M=4% 9, G(2)dl 93l F3leiA]= Bz)
Fig. 8. BJ(z) driven from G(z) in case of M=4,

HEhg o] 43 22k 34 DCT

#HE H

Now, we have got the polynomial transformed
value, C,(2). And, B ,(2) is computed from C(z)
from Eq.(20). Fig. 8 shows the procedure of Eq.(20).
We re-order C,(z) by polynomial module operation.
Each %-th row array means 4-th polynomial C,(z).
And, polynomial module
re-mapping of coefficients of polynomial C,(2).

operations are only

The coefficients of B ,(z) are A(k ) and

B(k, ) from Eq.(16),(17). In Eq.(16), B(k, M) is not
required by our computation, because we need
A(k, D) and B(k, ) only for 1=0,-,M—1. So,
N/2—1 additions are saved in computation of
polynomial transform, FEq.(22). Fig9
procedure of Eq.(16) in case of M=N=4.

shows the

Not required data

T2 9. tl¥A Bz)dl| o3 F3ledAle Ak, Y o} Bk, Y
Fig. 9. The derivation of B(k,1) and A, from
polynomial B(z).

From Eq.(4),(5), X(k, ) is the sum of A(k, ) and
B(k, D, and the NM—N—-M+1
additions when the properties in Eq.(15) are
exploited. Consequently, 2D-DCT for x(»n,m) is
completed by getting X(k&, 1).

sum - requires

IV. Fast Polynomial Transform

In this section, we develop the fast algorithm for
evaluating C (z). This fast polynomial transform

can be derived via the symmetry property of 7z
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This means that C,(2) can be evaluated by the

fast algorithm which is similar to the Fast Fourier
transform (FFT).

Define (H(z))mod (2 +1)2 (H(2)) 5y . For
example, ( z' )= ( 2 )mod (22 +1) .

The following lemma 3 indicates that 2 is the
twiddle factor for the period of N.
Lemma 3 :
period of N as following;

z satisfies symmetry property for the

PN
~i+ N l+2) _
<2M>

z

o~

z y

F4

(
wherei=0,--,2M—1, M=2/N .

o~
Yoy = 2, (

proof :

From the previous definition of 2= (22" ,y, in
eq.(22), generally,
In general,

% “mod (22 +1)
=( 2" "mod (2% + 1)) Lmod (2% + 1)
=( z¥"")*mod (2™ +1)

-

2 mod(z*+1)=1, L=N
2 mod(z*"+1)=-1, L=N/2,

Thus

~ i+ N

(2% o= 2" "mod (z2+1)

=( 2'mod (22 +1) - 2mod (22 + 1)) mod (22" + 1)

( 2'mod (2% +1) - 1)mod (2% +1)

2'mod (22" +1)= %'

In similar way,

( %H N/2) _ A i+ N2

= 2 mod (24 +1)

=(( 2'mod (241)) - —1) mod (22" +1)=— 2’ 1
Considering that % is compared to the twiddle

_ ;2 ‘
factor Wy (=e N) in DFT, we can drive a
fast polynomial transform algorithm in similar way
to FFT. The fast polynomial transform computes a

polynomial transform by log ,N stages. The com-—

Erg
o

(451)

% 40 % Clfe % 6 % 135

putation of each stage constructs recursive compu-

tations based on symmetric property of Lemma 3.

Express p and k& with the binary expression such

as
p=p 2 7 et 2 T p 20
é17;—11%—2”'170
k=R, 20 etk 2T T e 20
Ehirkig kg
where p,_,={0,1}, %k,_,=1{0,1} for »=1,2,,

#(=log ,N). Then,

Cla) =Cy, 4, yon,(2 (23)
1 1
:( »2:0 p.;::oU’" e
n U8y 20 Wgtekp, 20 TR0 VR, k) e 0,22 Yk, ‘+‘-~+2"k,,))>
< <o
1 1 o (B (20 Mo 49202 ke 20,
:[< ”2 o ST U, @ e g R ‘ 2 “))) +
LT 2>
J 1 o (B 27 g #9220 k2 k))
( g ponl'. G R A n s
= =,

A (20 1k, r»wz"km) }
t 2 <ot cann

We can separate even (p,=0) and odd (p,=1)
terms with respect to p in following way.

Uy, 002

t

1
¢4 @ =( 3

1

1
2

.2 (h 12 Wyt + 2127 2k,

b 0

2+~~+2“kn>))

<2M>
for p,=0 24)
1 1
L = ..
Ci, pony(2) —( 2,2, Us na(
(B 28 Yyt 2H20 2R, 2+-~-+2°k0)))
-z <2
for p,=1 (25)
Then,

Ckz Ly z"'ko(z)E< c‘}': z"'ko(z)

~ 2%, " (27, 20
F4 ©Z .

+

Ch, (@ )

oM
from Lemma 3,



136

(272 ot +2%)

E( C(,ﬁ‘,z,..ko(z) +(_1)k1_1 . %

Ch, son(@ )

<2M>

Eq.(24),(25) are the polynomial transforms for
Uz of even p(p,=0) and odd p(p,=1),
respectively. Recursively,

Y =( CP D

+(=1)kr 5 22 2 k)
C(zl:-a"'kn(z) ) ’ and
<2M>

€ @ ={ € @

A 2027 %, g+ +2 %)

+(—De 2
C}e]l_s...ko(z) )

<2M>

In this recursive structure, we define a polynomial
transform such as

Crril (@
U, 0l® for ¥=0
for ¥r=1,,¢—1,
( hzj::o... ,.?:UU/'. (D 2 e sy 2 7 Yy bk "
Cy ot (2 for r=t¢ ’

For convenience, we define the circular shifting
factor g, at the » th stage such as

0

for r=1

q,%
r—2
zo B2 fory=2,3,0,t

Then, we can express the general recursive

structure at » (=1,2,--, t) stage in following way

cronit (z)z( Clrri™M@+(=D* s 27 O i@ )

I
I

The computational structure of C ' ":53"(2) in

24

~dr

Cli @+ ¥ O ™@ ) - for £,y =0

2>
for k,_ =1

<2M>

(26)

CYri™a)— 27 Cily ™2 )

Eq.(26) constructs the butterfly operation shown in

Biadate] ¢lE Polynomial H#E o]

(452)

R 2+

Fig.10. This implies that the fast computation of
C(2) forms the same recursive structure as that of
FFT.

0prr1Py _ PrraPo
C",-z"'ko (Z) +C O'kr,_lz---ko

® (2)

Clpl—r—l Po
kygeky

(z) W@+ ClLY

W2 mod(zzM +1)

(2)

a2 10. r WA A4 Butterfly <4
Fig. 10. Butterfly operation at the rth stage.

Also, the polynomial transform C %% "(2) has
symmetry property for 4  This reduce
computational complexity by half. The symmetry of

c (2) comes from that of U,(2). The

can

broph
k, Ry

following lemma justifies the symmetry of U ,(2).
Lemvma 4 :

Uy 2)=U (z ") mod (z*+1). @n

-1 :
proof © U,z 7= ;0 V (Hz Fmod (2 +1)
= 3 V(—Pztmed (:M+1)
since V(=)= V,2M~3j) from (12)

2M .
2V 2M=j)z M mod (2 +1)

2M .
=2 V(D2 27 mod (22 +1)
p=
since
27 M= —1mod (z*+1) and V,2M)= V,(0),

2 -1 A
= 20 V ()2’ mod (2 **+1)
~=

=U,(2) mod (22 +1) .

Based on Lemma 4, the symmetry of C i‘; rl:.x;e'n'l’o( 2)
is as follows.

Lemrra 5

bioy v by
keoveky

C (z) satisfies the following

Symmetric property;

C ;i_’;e:mff‘f_ko(z) =C ﬁ'r_:...",;;“(z “"Hmod (2 +1) (28)
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roof :
cho o= %

b =0

i Up. (2D

(,,H b D~k k@)
<28

z (g 420 Pk, 20

L |
E(mz.::om »,Z OU’" a2

—{p, 2 kgt p, 20 N2 YR 4 +k0)))
{26

( L 1 o 2B, (2F Uhetp, 20
2D 3
P =0 pi=8

A, (20 Yo p, 20027 Yk, 4+“‘+ku)))
[§3°5)

from Lemra 3,

E(p,z,o EOU”" 2,{2)

b=

5~ B I LI 1 l+-'~+k(,>})

28>

Sfrom Lermymg 4,

(3%

2 =0 =8

’PD(zM l>

n = py 42T Vgt p, 20 N2 Tk, 1+‘“+k;,)))

28>
=Cy 5Pz "Hmod (224 1). i
Lemmo 5 indicates that only half o the
coefficients € (2) need to be computed. This

property  enables us  to  obtain  C} .572),

27T RIS by kg =271 from CY L "(2),
1=k, k=277 % For example, in case of M=4,
and r=3,

Ch (2 =cg2’ + ¢,z + o2 + cy2° + ¢, 2"
+¢52°+¢c42%+ ¢;27 and then
e R (=08 5 ) med (254 1)

-5

=(cpz "oz ez Tt ogr Yoz ez

+egz 4,z D mod (28 41)
c 2t~ g2t~y 2t

= gz g =2t -

~—eqr2t = et et -2t - o2

— 2% = ¢, 2",

Therefore, Fq.(26) needs only N M additions at
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each stage, So, the polynomial transform in Eq.(22)
requires overall N M- log.N additions and no
nudtiplication. Without the fast polynomdal transform,
the polynomial transform requires N-«2M- (N—1)
additions.

Fig.1l shows the computational flow of the fast
polynomial transform for N=8 At mark ©, half
coefficients are computed by the hutterfly-operation.
The other half coefficients are obtained from the
At Mark =, all
coefficients  are computed by butterfly-operation.

computed half of coefficients.

Uy(2) N /,//“\\ ] G
9, . . K /
(0 EVa— L )
3 S S Y\/\ NI /
N b ’
O e ot
- A // \“x N VAN
UG(Z)q,,o ; Py \“\ // ,/\ -, Ci(z)
/K / X }«’\
U(0) ~—e AR
<. R A
R e 1
/>/ /\/\:/ ,/// \\\ *
Uy(2) =TT o aNg q;, Ci{2)
- - ™~/ -
U, (#) 25— Lo oC,(2)

a8 11 N=8d o, cRAE drelEe EEE

Fp <% 1059 buterlly 9SO
ebdic),
Fig. 11. where N=8 the flow graph of polynomial

>

transform algorithm, 5 represents the
butterfly operations in Fig. 10.

\\ -
e
"y C(2)
4/;34;

Y

‘ AN 52
R |10

Fast Polynomial algorithm > Ck(Z)

a8 12, 35 clakaest
Fig. 12. the Fast

Polynomial  Transform

U, (2}~ FastP, T. | i z).
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oAl
Mark ® fetches all coefficients computed at those of
mark o. For example, at N=M=3§, the polynomial
transform in Eq.(22) requires only 192 additions by
using the fast algorithm, where the polynomial
transform without using the fast algorithm requires
836 additions.

Fig.12 represents the computational procedure of
Eq.(22) via fast polynomial transform.

V. Overall procedure

In this section, we summarize that the 2D-DCT-I
of Xk, D) (k=0,1,,N—1;
/=0,1,--,M—1), which can be computed in the
following steps.

x(n, m) is

Step 1) Perrmute x(n,m) into  3,(m)

1-1) Permute x(n,m) into ¥(n,m) from Eq.(2),

y(n, m) = x2n,2m)

W N—1—nm=x2n+1,2m)

y(n, M—1—m)=x(2n,2m+1)
WN—1—n,M—1-m)=x2n+1,2m+1)

n=0,1,, N2—-1
m=0,1,-,M/2—-1.

1-2) Permute y(n,m) into 3,(m) from Eq.(9),

3, Cm) = (p(m), m)
3,@Cm+1)=y(p(M—1—m),M—1—m)

where m=0,1,--,M/2—1;
p(m) =[(4p+ 1)m+ p}mod N,
Step 2) Compute 1D-DCT-II for ,(m) from
Eq.(10).
M=1 .
V(D= mZ:IO Y ,(m) cos[—”(%h].

Step 3) Compute the fast Polynomial transform from
Ea.(22).

, where

N=1
C (2)= pgo Uy 2z % mod (z M+ 1), where

U, ()= Z:MZ]_()IV,,(j)zf.

Step 4) Re-ordering o coefficients of C (2) from
Eq.(20).

B(2)=C,(2)z ¥*mod (22 + 1).

ko] 1= Polynomial #3t-& o]£3 2314

(454)

B

DCT w#AEE S

al

Step 5) Compute X(k, ) =-5[ Ak, D+ Blk, D],

where A(k, D) and B(k, ) are coefficients of B (2)
as defined by

B (2)= MZ_UIB(k, Dz~ gg;A(k, 2Dz

Stepl) is index mapping with no computational
operations. Each sub-step 1-1) and 1-2) is actually
combined into one mapping. Step2) is computation of
1D-DCT. We assume that the most efficient
ID-DCT-T fast algorithm” is used. Then the
number of multiplications and additions of 1D-DCT
are 1/2Mlog ,M and 3/2Mlog,M—M+1 for each
»p(=0,-,N—-1). So, step2), 1/2NMlog ,M
multiplications and 3/2NMlog ;M- NM+ N additions
are needed  Step3) NMlog ;N
— N/2+1 additions. Stepd) is permutation of C ,(2)

in

requires  only
's coefficients. So, this step does not also involve
any Stepb)  needs
NM— N—M+1 additions as explained in section IIL
Therefore, assuming that 1D-DCT is computed by
Lee’s fast algon'thm[g], computing NxM 2D-DCT-II
with  the needs total
3/2NMlog ;M + NMlog ;N — N/2 — M+2 additions

computational ~ operations.

suggested  algorithm

E 1NN /il dig 2D-DCT-I9] A4k
BA=s] wila cQ4e) 4+ n0 FA
2l )

Table 1. Comparison of computational com-
plexity of 2D-DCT-II for an NxN
block input.(a : the number of addi-
tions, U : the number of multiplica-
tions).

inlﬁ)elzgce row-column other fast Proposed
S??e](NXM) algon'thmm algorithm[m] algorithm
4x4 a=72, 1=32 a=70, n=16 a=76, u=16
8x8 a=464, =192 | a=474, p=14 | a=470, 1=9%6
16x16  |a=2592, u=1024| a=2570, 1=568 | a=2538, n=512

3930 a=13376, a=12970, a=127H4,

n=5120 u=2840 n=2560
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and  1/2NMlog,M  multiplication, where the
conventional row-column method requires
3/2NMlog ;NM—2NM+ N+ M additions and

1/2NMlog ,NM multiplications.

Table.l compares computational complexities of the
proposed algorithm, M.Vetterli’s fast algorithm“o] and
conventional row-column algorithm. And we exclude

other algorithms using polynomial transform® > ¥

in
the comparison, because those algorithms involve
complex operations so that the algorithms inherently

exceed complexities of the compared algorithms.

VI. Conclusions

This paper suggests a novel fast algorithm
computing 2D-DCT. The suggested algorithm is
based on the polynomial transform that does not
involve complex operations. The suggested algorithm
exploits the symmetric properties of polynomial so as
to reduce the computational complexity and construct
recursive computational structure. Since the previous
2D-DCT algorithms using polynomial transform were
derived from the fast algorithm based on FFT%3 8],
the algorithms
However, the proposed algorithm directly applies the

include complex  computation.
polynomial transform to DCT computation so that
the proposed method does not involve any complex

operations.
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