• Title/Summary/Keyword: Error bounds

Search Result 210, Processing Time 0.028 seconds

Hybrid Flow Shop with Parallel Machines at the First Stage and Dedicated Machines at the Second Stage

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2015
  • In this paper, a two-stage hybrid flow shop problem is considered. Specifically, there exist identical parallel machines at stage 1 and two dedicated machines at stage 2, and the objective of the problem is to minimize makespan. After being processed by any machine at stage 1, a job must be processed by a specific machine at stage 2 depending on the job type, and one type of jobs can have different processing times on each machine. First, we introduce the problem and establish complexity of several variations of the problem. For some special cases, we develop optimal polynomial time solution procedures. Then, we establish some simple lower bounds for the problem. In order to solve this NP-hard problem, three heuristics based on simple rules such as the Johnson's rule and the LPT (Longest Processing Time first) rule are developed. For each of the heuristics, we provide some theoretical analysis and find some worst case bound on relative error. Finally, we empirically evaluate the heuristics.

Comparison of Reliability Estimation Methods for One-shot Systems Using Accelerated Life Tests (가속수명시험을 이용한 원샷 시스템의 신뢰도 추정방법 비교)

  • Son, Young-Kap;Jang, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.212-218
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems with respect to sample sizes. To compare accuracy in reliability estimation methods, quantal-response data, characterizing one-shot systems, were simulated using failure times of LED obtained through the accelerated life test, and then the true reliability over time was evaluated using the failure times. The simulated quantal-response data were used to estimate the true reliability through applying reliability estimation methods in open literature. Accuracy of each reliability estimation method was compared in terms of both SSE (Sum of Squared Error) and MSE (Mean Squared Error), and then estimation trend for each method is found. Feasible bounds which true reliability would exist within were estimated through applying the found trends to quantal-response data set of a real weapon system.

On the Numerical Inversion of the Laplace Transform by the Use of an Optimized Legendre Polynomial

  • Al-Shuaibi, Abdulaziz
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.49-65
    • /
    • 2000
  • A method for inverting the Laplace transform is presented, using a finite series of the classical Legendre polynomials. The method recovers a real-valued function f(t) in a finite interval of the positive real axis when f(t) belongs to a certain class ${\mathcal{W}}_{\beta}$ and requires the knowledge of its Laplace transform F(s) only at a finite number of discrete points on the real axis s > 0. The choice of these points will be carefully considered so as to improve the approximation error as well as to minimize the number of steps needed in the evaluations. The method is tested on few examples, with particular emphasis on the estimation of the error bounds involved.

  • PDF

THE MEAN-SQUARE ERROR BOUNDS FOR THE GAUSSIAN QUADRATURE OF ANALYTIC FUNCTIONS

  • Ko, Kwan-Pyo;Park, U-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.293-307
    • /
    • 1997
  • In this paper we present the $L^2$-estimation for the kernel $K_n$ of the remaider term for the Gaussian quadrature with respect to one of four Chebyshev weight functions and the error bound of the type on the contour $$ $\mid$R_n(f)$\mid$ \leq \frac{2\pi}{\sqrt{l(\Gamma)}} max_{z\in\Gamma}$\mid$f(z)$\mid$ (\smallint_\Gamma $\mid$K_n(z)$\mid$^2$\mid$dz$\mid$)^\frac{2}{1}, $$ where $l(\Gamma)$ denotes the length of the contour $\Gamma$.

  • PDF

Design of a sliding Mode Controller Using a Neural Compensator (신경회로망 보상기를 이용하는 슬라이딩 모드 제어기 설계)

  • Lee, Min-Ho;Jung, Soon-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.256-262
    • /
    • 2000
  • This paper proposes a new sliding mode controller combined with a multi-layer neural network using the error back propagation learning algorithm,, The network acts as a compensator of the conventional sliding mode controller to improve the control performance when initial assumptions of uncertainty bounds of system parameters are violated. The proposed controller can reduce th steady state error of conventional sliding mode controller with the boundary layer technique Computer simulation results show that the proposed method is effective to control dynamic systems with unexpectably large uncertainties.

  • PDF

A Note on the Scheduling Problem in the Two-stage Assembly-type Flowshop (두단계 조립시스템에서의 일정계획문제에 관한 소고)

  • Yoon Sang-Hum;Kim Ho-Joon;Kwon Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.24-28
    • /
    • 2004
  • This paper considers a scheduling problem concerned with an assembly system where two components are first treated In their own parallel machines and then pulled to be assembled into a final product at a single assembly machine. The objective measure is the mean completion time of jobs(a finite number of products). Through characterizing solution properties, we obtain the worst case error bounds of an arbitrary permutation and a SPT based heuristic.

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.

Some Statistical Issues to Compare the Two Proportions in a Sample Survey (동일조사에서 비율비교와 관련된 두 가지 흔한 오류)

  • 김현철
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.169-179
    • /
    • 2003
  • We suggest two types of misuses to analyze the same survey data. One is related with the fact that people nay use the wrong bounds of error when they compare two proportions. And the other is related with that some non-statisticians are apt to use wrong methods when there is a neutral answer in a question. We suggest these methods and compare them with the statistically good method. It will be a good results in educational purpose.

Performance Analysis of th e Sign Algorithm for an Adaptive IIR Notch Filter with Constrained Poles and Zeros

  • Tani, Naoko;Xiao, Yegui
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.681-684
    • /
    • 2000
  • Gradient-type algorithms for adaptive IIR notch filters are very attractive in terms of both performances and computational requirements. Generally, it is quite difficult to assess their performances analytically. There have been several trials to analyze such adaptive algorithms as the sign and the plain gradient algorithms for some types of adaptive IIR notch filters, but many of them still remain unexplored. Furthermore, analysis techniques used in those trials can not be directly applied to different types of adaptive IIR notch filters. This paper presents a detailed performance analysis of the sign algorithm for a well-known adaptive IIR notch filter with constrained poles and zeros, which can not be done by just applying the related existing analysis techniques, and therefore has not been attempted yet. The steady-state estimation error and mean square error (MSE) of the algorithm are derived in closed forms. Stability bounds of the algorithm are also assessed. extensive simulations are conducted to support the analytical findings.

  • PDF

Reliability approximation for a complex system under the stress-strength model

  • Nayak, Sadananda;Roy, Dilip
    • International Journal of Reliability and Applications
    • /
    • v.13 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • This paper introduces a new approach for evaluating reliability of a complex system in terms of distributional parameters where analytical determination of reliability is intractable. The concept of discrete approximation, reported in the literature so far, fails to meet the latter requirement in terms of distributional parameters. The current work aims at offering a bound based approach where reliability planners not only get a clear idea about the extent of error but also can manipulate in terms of distributional parameters. This reliability approximation has been under taken under the Weibull frame work which is the most widely used model for reliability analysis. Numerical study has been carried out to examine the strength of our proposed reliability approximation via closeness between the two reliability bounds. This approach will be very useful during the early stages of product design as the distributional parameters can be adjusted.

  • PDF