THE MEAN-SQUARE ERROR BOUNDS FOR THE GAUSSIAN QUADRATURE OF ANALYTIC FUNCTIONS

KWAN PYO KO AND U JIN CHOI*

ABSTRACT. In this paper we present the L^2 -estimation for the kernel K_n of the remaider term for the Gaussian quadrature with respect to one of four Chebyshev weight functions and the error bound of the type on the contour

$$|R_n(f)| \leq rac{\sqrt{l(\Gamma)}}{2\pi} \max_{z \in \Gamma} |f(z)| \left(\int_{\Gamma} |K_n(z)|^2 |dz|
ight)^{rac{1}{2}},$$

where $l(\Gamma)$ denotes the length of the contour Γ .

1. Introduction

Consider the Gaussian quadrature with respect to the nonnegative weight function w(x) defined on the interval [-1,1] such that the moments $\int_{-1}^{1} x^{k} w(x) dx$ exist for $k = 0, 1, 2, \cdots$. If we apply the residue theorem to the contour integral

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)\pi_n(x)}{(z-x)\pi_n(z)} dz,$$

where Γ is the closed contour which contains the simple zeros of orthogonal polynomial $\pi_n(z)$, and integrate with respect to the w(x) on [-1,1], we get the formula

(1.1)
$$\int_{-1}^{1} f(t)w(t) dt = \sum_{k=1}^{n} \lambda_k f(\tau_k) + R_n(f),$$

Received October 24, 1994.

1991 Mathematics Subject Classification: Primary 65D32.

Key words and phrases: Gaussian quadrature, Chebyshev polynomial.

^{*} This work was partially supported by the KOSEF, under grant NO. 91-08-00-01, 1993.

where τ_k are the zeros of the *n*th degree orthogonal polynomial $\pi_n(\cdot : w)$ on [-1,1] and λ_k are the corresponding Christoffel numbers which are defined by

$$\lambda_k = \int_{-1}^1 \frac{\pi_n(t)}{(t - \tau_k)\pi'_n(\tau_k)} w(t) dt$$

If f is a single-valued analytic function in a domain D which contains [-1,1] and if Γ is a closed contour in D surrounding [-1,1], then the remainder term $R_n(\cdot)$ can be represented as a contour integral

(1.2)
$$R_n(f) = \frac{1}{2\pi i} \int_{\Gamma} K_n(z) f(z) dz,$$

where the kernel K_n is given by

(1.3)
$$K_n(z) = R_n\left(\frac{1}{z-\cdot}\right),$$

or, alternatively, by

(1.4)
$$K_n(z) = \frac{\rho_n(z)}{\pi_n(z)}.$$

Here, $\pi_n(z)$ is the orthogonal polynomial $\pi_n(\cdot : w)$ evaluated at z, while $\rho_n(z)$ is known as the function of the second kind which is defined by

(1.5)
$$\rho_n(z) = \int_{-1}^1 \frac{\pi_n(t)}{z - t} w(t) dt.$$

See, e.g.,[3].

Gautschi and Varga [5] have shown the error estimates in the following form on the circle and ellipse

$$(1.6) |R_n(f)| \le \frac{l(\Gamma)}{2\pi} \max_{z \in \Gamma} |K_n(z)| \max_{z \in \Gamma} |f(z)|,$$

where $l(\Gamma)$ denotes the length of Γ . And they [5] have given an explicit representation for the kernel K_n on Γ , and from these determined the maximum points on the circle and ellipse for a Jacobi measure w(t)

 $(1-t)^{\alpha}(1+t)^{\beta}$ for arbitrary $\alpha > -1, \beta > -1$. Martin and Stamp [8] have shown an explicit expression for kernel $K_n(z)$ by the method of the Laurent series expansion. They have given methods for computing the coefficients (in terms of the moments) for the Laurent series of $K_n(z)$. Our goal is to get the other estimate with the following form

$$|R_n(f)| \le \frac{1}{2\pi} \int_{\Gamma} |K_n(z)| |f(z)| |dz|$$

$$\le \frac{\sqrt{l(\Gamma)}}{2\pi} \max_{z \in \Gamma} |f(z)| \left(\int_{\Gamma} |K_n(z)|^2 |dz| \right)^{\frac{1}{2}},$$

that is , for a Jacobi measure $w(t) = (1-t)^{\alpha}(1+t)^{\beta}$ to find the L^2 norm for the kernel and to determine error bound on the ellipse. In section 2 we find the L^2 norm of the kernel $K_n(z)$ and obtain error bound on the elliptic contour with respect to one of four Chebyshev weight functions. In section 3 we give an example.

2. Main results

In this section we consider contour Γ as an elliptic contour which is defined by

$$\Gamma = \{z: z = \frac{1}{2}(\rho e^{i\theta} + \rho^{-1}e^{-i\theta}), \quad 0 \le \theta \le 2\pi\}, \quad \rho > 1.$$

2.1 Chebyshev measures of the first kind

For the weight function $w(t) = (1-t^2)^{-\frac{1}{2}}$, we know that the orthogonal polynomial is the Chebyshev polynomial T_n of the first kind,

(2.1.1)
$$T_n(z) = \frac{1}{2}(u^n + u^{-n}), \qquad z = \frac{1}{2}(u + u^{-1}).$$

Furthermore, one finds

$$(2.1.2) \int_{-1}^{1} \frac{T_n(t)}{z - t} (1 - t^2)^{-\frac{1}{2}} dt = \int_{0}^{\pi} \frac{\cos n\theta}{z - \cos \theta} d\theta = \frac{\pi}{\sqrt{z^2 - 1}} (z - \sqrt{z^2 - 1})^n,$$

hence we have the functions of the second kind

$$(2.1.3) \quad \int_{-1}^{1} \frac{T_n(t)}{z-t} (1-t^2)^{-\frac{1}{2}} dt = \frac{2\pi}{(u-u^{-1})u^n}, \quad z = \frac{1}{2}(u+u^{-1}).$$

It follows that

$$(2.1.4) K_n(z) = \frac{\rho_n(z)}{\pi_n(z)} = \frac{4\pi}{(u - u^{-1})u^n(u^n + u^{-n})}, z = \frac{1}{2}(u + u^{-1}).$$

We know that

$$(2.1.5) |K_n(z)|^2 = \frac{4\pi^2}{\rho^{2n}} \frac{1}{[a_2(\rho) - \cos 2\theta][a_{2n}(\rho) + \cos 2n\theta]}, z \in \Gamma$$

where

(2.1.6)
$$a_j(\rho) = \frac{1}{2}(\rho^j + \rho^{-j}), \quad j = 1, 2, 3, \dots, \quad \rho > 1.$$

For the detail, we refer to [5].

THEOREM 1. If $w(t) = (1 - t^2)^{-\frac{1}{2}}$ on (-1, 1), then

(2.1.7)
$$\int_{\Gamma} |K_n(z)|^2 |dz| \le \frac{16\pi^3}{(\rho - \frac{1}{\rho})(\rho^{4n} + 1)}, \quad \rho > 1.$$

Proof. Since $z = \frac{1}{2}(\rho e^{i\theta} + \rho^{-1}e^{-i\theta})$, we get $|dz| \leq \frac{1}{2}(\rho + \rho^{-1}) d\theta$, and the L^2 bound for the kernel K_n

$$\int_{\Gamma} |K_n(z)|^2 |dz| \leq \frac{2\pi^2 (\rho + \rho^{-1})}{\rho^{2n}} \int_0^{2\pi} \frac{1}{[a_2(\rho) - \cos 2\theta][a_{2n}(\rho) + \cos 2n\theta]} d\theta.$$

Setting $t = e^{i\theta}$, we see that $dt = itd\theta$ and

$$\begin{split} & \int_0^{2\pi} \frac{1}{[a_2(\rho) - \cos 2\theta][a_{2n}(\rho) + \cos 2n\theta]} \, d\theta \\ & = -\frac{4}{i} \int_C \frac{t^{2n+1}}{(t^4 - 2a_2(\rho)t^2 + 1)(t^{4n} + 2a_{2n}(\rho)t^{2n} + 1)} \, dt, \end{split}$$

where C is the unit circle, and applying the residue theorem, we get

$$\begin{split} &-\frac{4}{i}\int_{C'}\frac{t^{2n+1}}{(t^2-\rho^2)(t^2-\rho^{-2})(t^{2n}+\rho^{2n})(t^{2n}+\rho^{-2n})}\,dt\\ &=-\frac{4}{i}2\pi i\left[\operatorname{Res}(f,\rho^{-1})+\operatorname{Res}(f,-\rho^{-1})+\sum_{j=1}^{2n}\operatorname{Res}(f,-\rho^{-1}w_j)\right],\quad w_j^{2n}=-1 \end{split}$$

where Res(f, x) denotes the residue value of f at x.

To calculate the value $\sum_{j=1}^{2n} \operatorname{Res}(f, -\rho^{-1}w_j)$, let $t^{2n} + (\frac{1}{\rho})^{2n} = (t - z_1)(t - z_2) \cdots (t - z_{2n})$, then we have

$$\operatorname{Res}(f, -\frac{1}{\rho}w_j) = g(z_j) \frac{1}{(z_j - z_1) \cdots (z_j - z_{j-1})(z_j - z_{j+1}) \cdots (z_j - z_{2n})},$$

where
$$g(t) = \frac{t^{2n+1}}{(t^2 - \rho^2)(t^2 - \frac{1}{\rho^2})(t^{2n} + \rho^{2n})}$$
.

LEMMA 1. It holds that

$$\prod_{\substack{1 \le i \le 2n \\ i \ne j}} (z_j - z_i) = 2nz_j^{2n-1}.$$

Proof. Let $w_j^{2n} = -1$ and $z_j = \frac{1}{\rho} w_j$, since

$$t^{2n} + (\frac{1}{\rho})^{2n} = t^{2n} - (\frac{1}{\rho}w_j)^{2n} = t^{2n} - z_j^{2n}$$

= $(t - z_j)(t^{2n-1} + t^{2n-2}z_j + \dots + z_j^{2n-1}),$

it follows that

$$(t-z_1)(t-z_2)\cdots(t-z_j)\cdots(t-z_{2n})$$

= $(t-z_j)(t^{2n-1}+t^{2n-2}z_j+\cdots+z_j^{2n-1}).$

Cancelling $(t-z_j)$ on both sides, one gets

$$(t-z_1)\cdots(t-z_{j-1})(t-z_{j+1})\cdots(t-z_{2n})$$

= $(t^{2n-1}+t^{2n-2}z_j+\cdots+z_j^{2n-1}),$

and inserting t into z_j , we have

$$(z_j-z_1)\cdots(z_j-z_{j-1})(z_j-z_{j+1})\cdots(z_j-z_{2n})=2nz_j^{2n-1}.$$

Therefore we calculate the residue of f at $-\frac{1}{\rho}w_j$ in the form

$$\mathrm{Res}(f, -\frac{1}{\rho}w_j) = \frac{1}{2n(\rho^{2n} - \frac{1}{\rho^{2n}})} \left[\frac{z_j^2}{(z_j^2 - \rho^2)(z_j^2 - \frac{1}{\rho^2})} \right].$$

We have the residue by elementary calculation;

$$\mathrm{Res}(f,\frac{1}{\rho}) = \mathrm{Res}(f,-\frac{1}{\rho}) = -\frac{1}{4} \frac{1}{(\rho^2 - \frac{1}{\rho^2})(\rho^{2n} + \frac{1}{\rho^{2n}})}.$$

Now we have to calculate summation;

$$\frac{1}{2n(\rho^{2n} - \frac{1}{\rho^{2n}})} \sum_{j=1}^{2n} \frac{z_j^2}{(z_j^2 - \rho^2)(z_j^2 - \frac{1}{\rho^2})}, \quad z_j = \frac{1}{\rho} w_j, w_j^{2n} = -1.$$

LEMMA 2. It holds that

$$\sum_{j=1}^{2n} \frac{1}{w_j - x} = \frac{-2nx^{2n-1}}{1 + x^{2n}}, \quad w_j^{2n} = -1.$$

Proof. We can write in the form

$$x^{2n} + 1 = (x - w_1)(x - w_2) \cdots (x - w_{2n}).$$

If we differentiate both sides with respect to x, we have

$$2nx^{2n-1} = (x - w_2) \cdots (x - w_{2n}) + (x - w_1)(x - w_3) \cdots (x - w_{2n}) + \cdots + (x - w_1) \cdots (x - w_{2n-1}).$$

Dividing by the first equation, we have

$$\frac{2nx^{2n-1}}{1+x^{2n}} = \sum_{j=1}^{2n} \frac{1}{x-w_j}.$$

It follows that

$$\sum_{j=1}^{2n} \frac{1}{w_j^2 - x^2} = \sum_{j=1}^{2n} \frac{1}{2x} \left(\frac{1}{w_j - x} - \frac{1}{w_j + x} \right) = \frac{-2nx^{2n-2}}{1 + x^{2n}}, \quad w_j^{2n} = -1.$$

Therefore for $z_j = \frac{1}{\rho} w_j$ and $w_j^{2n} = -1$, we have

$$\begin{split} &\sum_{j=1}^{2n} \frac{z_j^2}{(z_j^2 - \rho^2)(z_j^2 - \frac{1}{\rho^2})} = \rho^2 \sum_{j=1}^{2n} \frac{w_j^2}{(w_j^2 - \rho^4)(w_j^2 - 1)} \\ &= \rho^2 \sum_{j=1}^{2n} (\frac{a}{w_j^2 - \rho^4} + \frac{b}{w_j^2 - 1}), \quad a = \frac{\rho^4}{\rho^4 - 1}, b = \frac{1}{1 - \rho^4}. \end{split}$$

We use Lemma 2, then it follows that

$$\sum_{j=1}^{2n} \frac{z_j^2}{(z_j^2 - \rho^2)(z_j^2 - \frac{1}{\rho^2})} = -\frac{n\rho^2(\rho^{2n} - \frac{1}{\rho^{2n}})}{(\rho^4 - 1)(\rho^{2n} + \frac{1}{\rho^{2n}})}.$$

So we have the residue;

$$\operatorname{Res}(f, \frac{1}{\rho}) + \operatorname{Res}(f, -\frac{1}{\rho}) + \sum_{j=1}^{2n} \operatorname{Res}(f, -\frac{1}{\rho}w_j) = -\frac{1}{(\rho^2 - \frac{1}{\rho^2})(\rho^{2n} + \frac{1}{\rho^{2n}})}.$$

We have proved the L^2 bound for the kernel K_n

$$\int_{\Gamma} |K_n(z)|^2 |dz| \le \frac{16\pi^3}{(\rho - \frac{1}{\rho})(\rho^{4n} + 1)}, \quad \rho > 1.$$

Now we have to estimate error bound

$$|R_n(f)| \le \frac{\sqrt{l(\Gamma)}}{2\pi} \max_{z \in \Gamma} |f(z)| \left(\int_{\Gamma} |K_n(z)|^2 |dz| \right)^{\frac{1}{2}}$$

Since the ellipse Γ has the length $l(\Gamma) = 4\epsilon^{-1}E(\epsilon)$, where

$$\epsilon = \frac{2}{\rho + \rho^{-1}}, \quad E(\epsilon) = \int_0^{\pi/2} \sqrt{1 - \epsilon^2 \sin^2 \theta} \, d\theta,$$

we have the error bound for the analytic function on the elliptic contour

$$(2.1.8) |R_n(f)| \le 4\sqrt{\epsilon^{-1}E(\epsilon)}\sqrt{\frac{\pi}{(\rho - \frac{1}{\rho})(\rho^{4n} + 1)}} \max_{z \in \Gamma} |f(z)|.$$

2.2 Chebyshev measures of the Second Kind

For the Chebyshev measure of the second kind, i.e., $w(t) = (1-t^2)^{\frac{1}{2}}$, the *n*th degree orthogonal polynomial is

(2.2.1)
$$U_n(z) = \frac{u^{n+1} - u^{-(n+1)}}{u - u^{-1}}, \qquad z = \frac{1}{2}(u + u^{-1})$$

while

(2.2.2)
$$\int_{-1}^{1} \frac{U_n(t)}{z-t} (1-t^2)^{\frac{1}{2}} dt = \frac{\pi}{u^{n+1}}, \quad z = \frac{1}{2} (u+u^{-1}).$$

We know that

$$(2.2.3) |K_n(z)|^2 = \frac{\pi^2}{\rho^{2n+2}} \frac{a_2(\rho) - \cos 2\theta}{a_{2n+2}(\rho) - \cos 2(n+1)\theta}, \quad z \in \Gamma$$

where

(2.2.4)
$$a_j(\rho) = \frac{1}{2}(\rho^j + \rho^{-j}), \quad j = 1, 2, 3, \dots, \quad \rho > 1.$$

For the detail, we refer to [5].

THEOREM 2. If $w(t) = (1 - t^2)^{\frac{1}{2}}$ on (-1, 1), then

(2.2.5)
$$\int_{\Gamma} |K_n(z)|^2 |dz| \le \frac{\pi^3 (\rho + \rho^{-1})(\rho^2 + \frac{1}{\rho^2})}{(\rho^{4n+4} - 1)}, \quad \rho > 1.$$

Proof. For $z \in \Gamma$, we get $|dz| \leq \frac{1}{2}(\rho + \rho^{-1})d\theta$, and the L^2 bound for the kernel K_n

$$\int_{\Gamma} |K_n(z)|^2 |dz| \le \frac{\pi^2(\rho + \rho^{-1})}{2\rho^{2n+2}} \int_0^{2\pi} \frac{a_2(\rho) - \cos 2\theta}{a_{2n+2}(\rho) - \cos 2(n+1)\theta} d\theta.$$

Setting $t = e^{i\theta}$, we see that $dt = itd\theta$ and

$$\int_0^{2\pi} \frac{a_2(\rho) - \cos 2\theta}{a_{2n+2}(\rho) - \cos 2(n+1)\theta} \, d\theta = \frac{1}{i} \int_C \frac{t^{2n-1}(t^4 - 2a_2(\rho)t^2 + 1)}{t^{4n+4} - 2a_{2n+2}(\rho)t^{2n+2} + 1} \, dt,$$

where C is the unit circle, and applying the residue theorem, we get

$$\frac{1}{i} \int_{C} \frac{t^{2n-1}(t^{2} - \rho^{2})(t^{2} - \rho^{-2})}{(t^{2n+2} - \rho^{2n+2})(t^{2n+2} - \rho^{-(2n+2)})} dt$$

$$= \frac{1}{i} 2\pi i \left[\sum_{j=1}^{2n+2} \operatorname{Res}(f, \frac{1}{\rho} w_{j}) \right], w_{j}^{2n+2} = 1$$

where $\operatorname{Res}(f,x)$ denotes the residue value of f at x. To calculate the value $\sum_{j=1}^{2n+2} \operatorname{Res}(f,\frac{1}{\rho}w_j)$, let $t^{2n+2} - (\frac{1}{\rho})^{2n+2} = (t-z_1)(t-z_2)\cdots(t-z_{2n+2})$, then we have

$$\operatorname{Res}(f, \frac{1}{\rho}w_j) = g(z_j) \frac{1}{(z_j - z_1) \cdots (z_j - z_{j-1})(z_j - z_{j+1}) \cdots (z_j - z_{2n+2})},$$

where
$$g(t) = \frac{t^{2n-1}(t^2-\rho^2)(t^2-\rho^{-2})}{t^{2n+2}-\rho^{2n+2}}$$
. Since $\prod_{\substack{1 \leq i \leq 2n+2 \\ i \neq j}} (z_j-z_i) = (2n+2)z_j^{2n+1}$, we have

$$\operatorname{Res}(f, \frac{1}{\rho}w_j) = \frac{z_j^{2n-1}(z_j^2 - \rho^2)(z_j^2 - \rho^{-2})}{(2n+2)z_j^{2n+1}(z_j^{2n+2} - \rho^{2n+2})},$$

and

$$\sum_{j=1}^{2n+2} \operatorname{Res}(f, \frac{1}{\rho} w_j) = \frac{1}{(2n+2)(\frac{1}{\rho^{2n+2}} - \rho^{2n+2})} \sum_{j=1}^{2n+2} \frac{(z_j^2 - \rho^2)(z_j^2 - \rho^{-2})}{z_j^2}.$$

Therefore for $z_j = \frac{1}{\rho} w_j$ and $w_j^{2n+2} = 1$, we have

$$\sum_{j=1}^{2n+2} \left[z_j^2 - (\rho^2 + \frac{1}{\rho^2}) - \frac{1}{z_j^2} \right] = -(2n+2)(\rho^2 + \frac{1}{\rho^2}),$$

since $\sum_{j=1}^{2n+2} w_j^2 = \sum_{j=1}^{2n+2} \frac{1}{w_j^2} = 0$. We have proved the L^2 bound for the kernel K_n

$$\int_{\Gamma} |K_n(z)|^2 |dz| \le \frac{\pi^3 (\rho + \rho^{-1})(\rho^2 + \frac{1}{\rho^2})}{(\rho^{4n+4} - 1)}.$$

2.3 Chebyshev Measures of the Type $\alpha = -\beta = -\frac{1}{2}$

Let $\alpha = -\beta = -\frac{1}{2}$. The orthogonal polynomial in this case is given by

(2.3.1)
$$p_n(z) = \frac{u^{n+1} + u^{-n}}{u+1}, \qquad z = \frac{1}{2}(u + u^{-1}).$$

Furthermore

$$\int_{-1}^{1} \frac{p_n(t)}{z - t} \sqrt{\frac{1 + t}{1 - t}} dt = \int_{0}^{\pi} \frac{\cos(n+1)\theta + \cos n\theta}{z - \cos \theta} d\theta$$

$$= \frac{2\pi(u+1)}{(u - u^{-1})u^{n+1}}, \qquad z = \frac{1}{2}(u + u^{-1}).$$

We know that

(2.3.3)

$$|K_n(z)|^2 = \frac{4\pi^2}{\rho^{2n+1}} \frac{(a_1(\rho) + \cos \theta)^2}{[a_2(\rho) - \cos 2\theta][a_{2n+1}(\rho) + \cos(2n+1)\theta]}, \quad z \in \Gamma$$

where

(2.3.4)
$$a_j(\rho) = \frac{1}{2}(\rho^j + \rho^{-j}), \quad j = 1, 2, 3, \dots, \quad \rho > 1.$$

For the detail, we refer to [5].

THEOREM 3. If $w(t) = \sqrt{\frac{1+t}{1-t}}$ on (-1,1), then

(2.3.5)
$$\int_{\Gamma} |K_n(z)|^2 |dz|$$

$$\leq \left[\frac{8\pi^3(\rho + \rho^{-1})^2}{(\rho - \rho^{-1})(\rho^{4n+2} + 1)} - \frac{4\pi^3(\rho + \rho^{-1})}{(\rho^{4n+2} - 1)} \right], \quad \rho > 1.$$

Proof. For $z \in \Gamma$, we get $|dz| \leq \frac{1}{2}(\rho + \rho^{-1}) d\theta$, and the L^2 bound for the kernel K_n

$$\int_{\Gamma} |K_n(z)|^2 |dz| \leq \frac{2\pi^2 (\rho + \rho^{-1})}{\rho^{2n+1}} \int_0^{2\pi} \frac{(a_1(\rho) + \cos \theta)^2}{(a_2(\rho) - \cos 2\theta)(a_{2n+1}(\rho) + \cos(2n+1)\theta)} \, d\theta.$$

Setting $t = e^{i\theta}$, we see that $dt = itd\theta$ and

$$\begin{split} & \int_0^{2\pi} \frac{(a_1(\rho) + \cos\theta)^2}{[a_2(\rho) - \cos2\theta][a_{2n+1}(\rho) + \cos(2n+1)\theta]} \, d\theta \\ & = -\frac{1}{i} \int_C \frac{t^{2n}(t^2 + 2a_1(\rho)t + 1)^2}{(t^4 - 2a_2(\rho)t^2 + 1)(t^{4n+2} + 2a_{2n+1}(\rho)t^{2n+1} + 1)} \, dt, \end{split}$$

where C is the unit circle, and applying the residue theorem, we get

$$-\frac{1}{i} \int_{C} \frac{t^{2n}(t+\rho)(t+\frac{1}{\rho})}{(t-\rho)(t-\rho^{-1})(t^{2n+1}+\rho^{2n+1})(t^{2n+1}+\rho^{-(2n+1)})} dt$$

$$= -\frac{1}{i} 2\pi i \left[\operatorname{Res}(f,\rho^{-1}) + \sum_{j=1}^{2n+1} \operatorname{Res}(f,-\rho^{-1}w_j) \right], \quad w_j^{2n+1} = -1$$

where $\operatorname{Res}(f,x)$ denotes the residue value of f at x. To calculate the value $\sum_{j=1}^{2n+1} \operatorname{Res}(f,-\rho^{-1}w_j)$, let $t^{2n+1}+(\frac{1}{\rho})^{2n+1}=(t-z_1)(t-z_2)\cdots(t-z_{2n+1})$, then we have

$$\operatorname{Res}(f, -\frac{1}{\rho}w_{j}) = g(z_{j}) \frac{1}{(z_{j} - z_{1}) \cdots (z_{j} - z_{j-1})(z_{j} - z_{j+1}) \cdots (z_{j} - z_{2n+1})},$$

where
$$g(t) = \frac{t^{2n}(t+\rho)(t+\frac{1}{\rho})}{(t-\rho)(t-\frac{1}{\rho})(t^{2n+1}+\rho^{2n+1})}$$
.

Since $\prod_{\substack{1 \leq i \leq 2n+1 \ i \neq j}} (z_j - z_i) = (2n+1)z_j^{2n}$, we calculate residue of f at $-\frac{1}{g}w_j$ in the form

$$\operatorname{Res}(f, -\frac{1}{\rho}w_j) = \frac{1}{(2n+1)(\rho^{2n+1} - \frac{1}{\rho^{2n+1}})} \left[\frac{(z_j + \rho)(z_j + \frac{1}{\rho})}{(z_j - \rho)(z_j - \frac{1}{\rho})} \right].$$

We have the residue by elementary calculation;

$$\operatorname{Res}(f, \frac{1}{\rho}) = -\frac{(\rho + \frac{1}{\rho})}{(\rho - \frac{1}{\rho})(\rho^{2n+1} + \frac{1}{\rho^{2n+1}})}.$$

For $z_j = \frac{1}{\rho} w_j$ and $w_j^{2n+1} = -1$, it follows that

$$\begin{split} &\sum_{j=1}^{2n+1} \frac{(z_j + \rho)(z_j + \frac{1}{\rho})}{(z_j - \rho)(z_j - \frac{1}{\rho})} = \sum_{j=1}^{2n+1} \frac{(w_j + \rho^2)(w_j + 1)}{(w_j - \rho^2)(w_j - 1)} \\ &= \sum_{j=1}^{2n+1} \left[1 + \frac{a}{w_j - \rho^2} + \frac{b}{w_j - 1} \right], \quad a = \frac{2\rho^2(\rho^2 + 1)}{\rho^2 - 1}, b = \frac{2(1 + \rho^2)}{1 - \rho^2}. \end{split}$$

Therefore we get

$$\frac{1}{(2n+1)(\rho^{2n+1} - \frac{1}{\rho^{2n+1}})} \sum_{j=1}^{2n+1} \frac{(z_j + \rho)(z_j - \frac{1}{\rho})}{(z_j - \rho)(z_j - \frac{1}{\rho})}$$

$$= \frac{1}{(\rho^{2n+1} - \frac{1}{\rho^{2n+1}})} - \frac{(\rho + \frac{1}{\rho})}{(\rho - \frac{1}{\rho})(\rho^{2n+1} + \frac{1}{\rho^{2n+1}})},$$

where using $\sum_{j=1}^{2n+1} \frac{1}{w_j - x} = \frac{-(2n+1)x^{2n}}{1+x^{2n+1}}, w_j^{2n+1} = -1$. We have proved the L^2 bound for the kernel K_n

$$\int_{\Gamma} |K_n(z)|^2 |dz|
\leq \frac{2\pi^2(\rho + \rho^{-1})}{\rho^{2n+1}} \int_0^{2\pi} \frac{(a_1(\rho) + \cos \theta)^2}{(a_2(\rho) - \cos 2\theta)(a_{2n+1}(\rho) + \cos(2n+1)\theta)} d\theta
= \left[\frac{8\pi^3(\rho + \rho^{-1})^2}{(\rho - \rho^{-1})(\rho^{4n+2} + 1)} - \frac{4\pi^3(\rho + \rho^{-1})}{(\rho^{4n+2} - 1)} \right].$$

REMARK. The well-known identity for Jacobi polynomials, $\pi_n^{(\beta,\alpha)}(z) = (-1)^n \pi_n^{(\alpha,\beta)}(z)$, implies $|K_n^{(\beta,\alpha)}(z)| = |K_n^{(\alpha,\beta)}(-z)| = |K_n^{(\alpha,\beta)}(-\bar{z})|$. Thus for the case $\alpha = -\beta = \frac{1}{2}$, we have the same L^2 bound (2.3.5) for the kernel K_n .

3. Example

In this section we apply the results in section 2 to obtain the L^2 error estimate for Gaussian quadrature.

EXAMPLE.

I)
$$\int_{-1}^{1} \frac{1}{2-t} \sqrt{\frac{1-t}{1+t}} dt$$
, II) $\int_{-1}^{1} \frac{\sqrt{1-t^2}}{2-t} dt$.

I) We consider $w(t) = \sqrt{\frac{1-t}{1+t}}$ as the Jacobi weight with parameter $\alpha = -\beta = \frac{1}{2}$. To bound f on the elliptic contour Γ , note that

$$|f(z)| = \frac{1}{|2-z|} \le \frac{1}{2-|z|} \le \frac{1}{2-\frac{1}{2}(\rho+\rho^{-1})}. \quad z \in \Gamma$$

Therefore we get the error bound in the form

$$|R_n(f)| \le 2\sqrt{\epsilon^{-1}E(\epsilon)}\sqrt{\frac{2\pi(\rho+\rho^{-1})^2}{(\rho-\rho^{-1})(\rho^{4n+2}+1)} - \frac{\pi(\rho+\rho^{-1})}{(\rho^{4n+2}-1)}}$$

$$(3.1) \qquad \times \frac{1}{2-\frac{1}{2}(\rho+\rho^{-1})},$$

where $\epsilon = \frac{2}{\rho + \rho^{-1}}$, $1 < \rho < 2 + \sqrt{3}$.

II) We consider $w(t) = (1-t^2)^{\frac{1}{2}}$ as the Jacobi weight with parameter $\alpha = \beta = \frac{1}{2}$ and we get the error bound in the form

$$(3.2) \quad |R_n(f)| \le \sqrt{\epsilon^{-1} E(\epsilon)} \sqrt{\frac{\pi(\rho + \rho^{-1})(\rho^2 + \rho^{-2})}{\rho^{4n+4} - 1}} \frac{1}{2 - \frac{1}{2}(\rho + \rho^{-1})},$$

where $\epsilon = \frac{1}{\rho + \rho^{-1}}$, $1 < \rho < 2 + \sqrt{3}$.

$f(x) = \frac{1}{2-x}, \ w(t) = (1-t)^{\frac{1}{2}}(1+t)^{\frac{1}{2}}$							
n	bound	rho	True error	supremum norm			
5	5.2100(-5)	3.3984	1.4906(-6)	5.4156(-5)			
10	1.9254(-10)	3.5558	2.8436(-12)				
15	5.4507(-16)	3.6123	-1.1102(-16)	5.6433(-16)			

Table 3.1 (On the ellipse)

Table 3.2 (On the ellipse)

$f(x) = \frac{1}{2-x}, \ w(t) = (1-t)^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}$							
\overline{n}	bound	rho	True error	supremum norm			
5	1.2187(-4)	3.4066	1.8543(-6)	1.8257(-4)			
10	4.4492(-10)	3.5579	3.5374(-12)	6.5903(-10)			
15	1.2544(-15)	3.6133	-6.6613(-16)	1.8507(-15)			

We have expressed the error bound as a parameter of ρ . Number in parentheses of Table 3.1 and Table 3.2 indicate decimal exponents. As n incresses, the number ρ approaches to $2 + \sqrt{3}$. This is due to the nature of weak singularity of denominator factor. And we have compared with the supremum norm(Gautschi and Varga [5]).

References

- [1] P. J. Davis, Interpolation and Approximation, Blasidell, New York, 1963.
- [2] P. J. Davis and P. Rabinowitz, Methods of numerical integration, Academic Press, New York, 1975.
- [3] W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, in E. B. Christoffel, The Influence of his Work on Mathematics and Physical Sciences, P. L., Butzer and F. Fehér, eds., Birkhäuser, Basel, 1975, p. 72-147.
- [4] W. Gautschi and E. Tychopoulos, A note on the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature, SIAM. J. Numer. Anal. 27 (1990), 219-224.
- [5] W. Gautschi and R. S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM. J. Numer. Anal. 20 (1983), 1170-1186.
- [6] W. Gautschi and Shikang Li, The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points, Journal of Computation and Applied Mathematics 33 (1990), 315-329.
- [7] ______, Gauss-Radau and Gauss-Lobatto quadratures with double end points, Journal of Computation and Applied Mathematics 34 (1991), 343-360.

- [8] C. Martin and M. Stamp, A Note on the Error in Gaussian Quardature, Applied Mathematics And Computation 42 (1992), 25-35.
- [9] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, R. I., 1975.

Kwan Pyo Ko Department of Computer Engineering Dongseo University Pusan 617-716, Korea E-mail: kpko@kowon.dongseo.ac.kr

U Jin Choi Department of Mathematics Korea Advanced Institute of Science and Technology 373-1 Kusungdong, Yusonggu Taejon 305-701, Korea