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THE MEAN-SQUARE ERROR BOUNDS
FOR THE GAUSSIAN QUADRATURE
OF ANALYTIC FUNCTIONS

KwaN Pyo Ko anp U JiN Chor*

ABSTRACT. In this paper we present the L2-estimation for the ker-
nel K, of the remaider term for the Gaussian quadrature with re-
spect to one of four Chebyshev weight functions and the error bound
of the type on the contour

zlfrr) max 1 (2)| (/F |Kn(z)|=>|dz|>% ,

where {(T') denotes the length of the contour I'.

|Rn(f)] <

1. Introduction

Consider the Gaussian quadrature with respect to the nonnegative
weight function w(z) defined on the interval [—1, 1] such that the mo-
ments f~11 zFw(z) dr exist for k = 0,1,2,---. If we apply the residue
theorem to the contour integral

1 f(2)mn ()

i B A LA
27 Jr (2 — z)mp(2) “

where I is the closed contour which contains the simple zeros of or-
thogonal polynomial 7,(z), and integrate with respect to the w(z) on
[~1,1], we get the formula
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k=1
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where 7, are the zeros of the nth degree orthogonal polynomial (- :
w) on [—1,1] and A; are the corresponding Christoffel numbers which

are defined by
1
7 (t)
= [ e

If f is a single-valued analytic function in a domain D which contains
[-1,1] and if T is a closed contour in D surrounding [—1,1], then the
remainder term R,(-) can be represented as a contour integral

(1.2) mm—iﬂmwmw,

T o2mi

where the kernel K, is given by

(13 Ko@) = Ro ().

or, alternatively, by

(1.4) Ko(z) = 223

Here, 7,(2) is the orthogonal polynomial 7, (- : w) evaluated at z, while
pn(z) is known as the function of the second kind which is defined by

(1.5) pulz) = /_ W"(t?w(t) dt.

See, e.g.,[3].
Gautschi and Varga [5] have shown the error estimates in the following
form on the circle and ellipse

{r)
2

(1.6) |Rn(f)] < rggglKn(Z)l rggglfu)l,

where [(T") denotes the length of I. And they [5] have given an explicit
representation for the kernel K,, on I', and from these determined the
maximum points on the circle and ellipse for a Jacobi measure w(t) =
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(1 —t)*(1 +t)? for arbitrary & > —1,8 > —1. Martin and Stamp [8]
have shown an explicit expression for kernel K, (z) by the method of
the Laurent series expansion. They have given methods for computing
the coefficients (in terms of the moments) for the Laurent series of
K, (z). Our goal is to get the other estimate with the following form

1
R 5= [ 1K1
1) o max £ ([ 1Ka(Plael )

that is , for a Jacobi measure w(t) = (1 — #)*(1 + #)? to find the L2
norm for the kernel and to determine error bound on the ellipse. In
section 2 we find the L? norm of the kernel K,(z) and obtain error
bound on the elliptic contour with respect to one of four Chebyshev
weight functions. In section 3 we give an example.

IN

2. Main results

In this section we consider contour I' as an elliptic contour which is
defined by

1 . A
I‘:{z:z=§(pe’9+p_le"w), 0<8<2r}, p>1.

2.1 Chebyshev measures of the first kind

For the weight function w(t) = (1 —#2)~ %, we know that the orthog-
onal polynomial is the Chebyshev polynom1al T,, of the first kind,

(2.1.1) Tn(z) = - (u" +u™"), z=-(u+ut).

l\le—d
I\DID—‘

Furthermore, one finds
(2.1.2)

! 1 v Y —
/ M(l—tQ)_idt:/ B = —(z— 22— 1)",
0

-1 z—1
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hence we have the functions of the second kind

1T() _ 27 1 _
(2.1.3) le_t(l—fg) dt_m, z-—2—(u+u .

It follows that

(2.14) K,(2) = 7/::(2 = 'u,—l)fej:Eu" Ty 2 %(u—#—u h
We know that
4m?
(215)  [Ka(2))" = P2 [az(p) — cos 28][c112n(p) + cos 2nd]’ cel
where
(2.1.6) a;(p) = %(/ﬂ bp), J=1,23, . p> 1.
For the detail, we refer to [5].
THEOREM 1. Ifw(t) = (1 —#2)"% on (—1,1), then
(2.1.7) /]Kn(z)|2ldz| <.l
r (p—2)(p*" +1)

Proof. Since z = L(pe® + p~le %), we get ldz] < 3(p + p~1)d8,
and the L? bound for the kernel K,

2ni(p+p7Y) [27 1
/ | K (2)[ldz] < p2n _/0 laz2(p) — cos 26)[agn (p) + cos 2n8] d0

Setting t = €, we see that dt = itdf and

/27T l de
o laz(p) — cos26][azn(p) + cos 2nb]
4 t2n+1

i — dt
P Jo (1 = 2a5(p)t2 + 1)(t* + 2an (p) 12" + 1)
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where C is the unit circle, and applying the residue theorem, we get

4 t2n+l

de
i /c (12 = p2)(t2 — p=2)(t2" + p2n)(¢2 + p=2n)

2n
4
= =2 [Res(f,p“) +Res(f,—p~ 1) + D> Res(f,—p w;)|, w?=-1
7=1

where Res(f,z) denotes the residue value of f at x.

To calculate the value }:321 Res(f, —p™ w;), let 127 + (2)** = (t -
21)(t — z2) -+ (t — 22n), then we have

1

(zi —z1) (2 — zj21)(25 ~ zj41) -+ (25 — 22n)

Res(f, —/—l)wj) = g(z)

t2n+1
- (t2_p2)(t2_;l§_)(t2n+p2n) .

O

where g(t)

LeMMA 1. It holds that

. 2n—1
| I (27 = ) = 2n2z;""".
1<i<2n
i2

2n . __ T
Proof. Let wi™ = ~1 and z; = 5 Wj, since

1 1
t2" + (_)2n — t2n _ (_w’_)2n — t2n . z]2n
p p

— (t_zj)(th—l +t2n—2zj 4. +z]2n——l)’

it follows that
(t—z1)(t—22) - (t —25) - (t = zn)
— (t . Zj)(t?n—-l + t2n—2zj 44 z;.fn~l)‘
Cancelling (t — z;) on both sides, one gets
(t=2) (= )t = 2311) -+ (7 = 220)
— (t2n—1 +t2n-—2zj 4+t z]?n—l).
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and inserting ¢ into 2z;, we have

(25 = 21) -+ (25 = 25=1)(2 = 2j41) -+~ (25 — 220) = 202777

Therefore we calculate the residue of f at —;l)—wj in the form

1 1 2
Res(f, —~w;) = I .
=) 2n(p? — —2) [(ZE- - p?) (22 — ;15)}

[)
We have the residue by elementary calculation;
1 1 1 1
Res(f,=) = Res(f,— =) = —= . .
p P 4 (PP = )M + o)

Now we have to calculate summation;

n 1

— 2n __
i E ,  Zj = —wj,w; = —1.
2n Eg';; =1 Z —p ]2 14

LEMMA 2. It holds that

2n

Z 1 —2n.r2"
w; — T

j=1 7

1+m2n ! wj

—1

Proof. We can write in the form

2" 4+ 1= (z —w)(z —ws) - (T — wap).

If we differentiate both sides with respect to =, we have

oppin-1 — (x_wz)...(x__wgn)+(x—wl)(m—w3)"'($—w2n)+"'

+@—w) @ — wop 1)

Dividing by the first equation, we have

_ 2
2nr2n—l i 1

1+ z2n _‘—Tan—wj'
R
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It follows that
2n 2n —~92

1 1 1 —2nx on
= —:1:2 ;2:1”(10]—:5 wy +a:) 1+x2n ° he

Therefore for z; = F—l)wj and w?" = —1, we have
2n 2 2n 2
we
2 J
Z ECIVI0 B d
L@ k) AWl w1
2n

4
2 a b P 1
=p E,( 3 + —3 ), a= b= :
P wi—pt " wi-1 pt—1 1—pt

We use Lemma 2, then it follows that

QZ _ np2<p2n - ;11’?7
= (2 - p?) ?—#) (P = 1)(P™ + =)
So we have the residue;
1 L 2n 1
Res(f, =)+ Res(f,—=)+ » Res({, ——w )= — .
, AP T E R A

We have proved the L? bound for the kernel K,

1673
|Kn(2)[?|dz] < . p>1
A =D+ 1)

Now we have to estimate error bound

>%

Since the ellipse I" has the length [(T") = 4¢ 71 E(<), where

2 /2 >
€= o E(e) :/ V1—€“sin®0do,
0

p+p

Rl < 5 w1 ([ 1K
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we have the error bound for the analytic function on the elliptic contour

(2.1.8) Al < 4/ 1E(e) \/

—_—)-(T+l) nax|f(z)]

2.2 Chebyshev measures of the Second Kind

For the Chebyshev measure of the second kind, i.e., w(t) = (1—12)2,
the nth degree orthogonal polynomial is

,n+1 _ y—in+1) |
(2.2.1) Un(z2) = = - 1;_1 L z=a(utuY

- £

while
1
Un(t) 2\1 4l 1 1
2. —t dt = —— = -

(2.2.2) [1z_t(1 di= o, e= st

We know that

2
9 ™ az(p) — cos 26
2. A(2)2 = , r
(223) [Kn(2)] P2 ag, i 0(p) — cos2(n + 1)8 Z€
where
1o
(2.2.4) a;(p) =5 +p77). =123, p>1L

For the detail, we refer to [5].

THEOREM 2. Ifw(t) = (1 - t?)% on (—1,1), then

m(p+p1)(0" + 5
(2.2.5) /FIKn(z)! ldz| < v p>1.
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Proof. For z € T', we get |dz| < 1(p+p~')df, and the L? bound for
the kernel K,

72 (p+p~ 1) /2” asz(p) — cos 26
K, (z)|°|d= < :
/ |K.(2)[?|dz| 2p2n+2 0 A2ny2(p) —cos2(n+1)6 @b

Setting ¢t = €', we see that dt = itdf and

/2" az(p) — cos 26 P / t2n=1(t4 —~ 2a5(p)t? + 1)
0 C

" dt,
agn42(p) —cos2(n+1)0 $an+4 _ 202ﬂ+2(p)t2"+2 1

where C is the unit circle, and applying the residue theorem, we get

1 t2n—1(t2 _ pZ)(fQ _ p—2) gt
; c (t2n+2 — p2n+-2)(t2n+2 . p—(2n+2)) ’
2n+2
= —2m Z Res(f ,w;z-" F2 -1

where Res(f, z) denotes the residue value of f at z.
To calculate the value z2n+2 Res(f, %wj), let £2742 — (1)242 = (¢ —
z1)(t — z2) -+ (t — 29n42), then we have

1

(zj —21) (25— zj-1)(25 — 2j41) - (25 — 22n42)

?

Res(, -j;wj) — ()

201 (12 _p2) (12— p~2)
where g(t) = tz(nw,génw »

Since [] zi)=(2n+ 2)z32”+1, we have

< (25 =
1<:i<2n+42
i#]

Res(f lw-) 5 E A )
) p J (2?? + 2)ZJ2-n+1(Z]2~n+2 _ p2n+2)a

and

2n+2 1 2n+d 2: —p )( p..z)
Z Res(f w]) - (277 i 2)(7‘7 p2n+2 Z 22 .

1=1 2
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Therefore for z; = %wj and w2”+2 =1, we have
2n+2
. . 1 1 1
Z (2] — (0" + =) - =l==@n+2)(P* + =)
; p 22 p
J:l 2
since ZQ"H 2 = Z?”TQ -1, = 0. We have proved the L? bound for
J .7

the kernel K,

K\ 2lgal < TP )
JCRE .

in+4 _ ]
(p ) O
2.3 Chebyshev Measures of the Type a = -8 = —%
Let a = -0 = —%. The orthogonal polynomial in this case is given
by
urtl 4y 1 1
(231) pn(Z)— ——Tz—:i:—i——, z = §(u+u )
Furthermore
1
/ pn(t) 1+tdt= cos(n+l)9+cosn€d9
12—ty 11—t 0 z —cosf
o 2m(u+1) 1 4
(232) = (—’U,Tut—l)u—"“_’ Z = 5(71; +u )
We know that
(2.3.3)
472 (a1(p) + cos6)?
r
|Kn ()] = p?tl [ag(p) — cos 20)[azn41(p) + cos(2n + 1)6]’ i
where
1 . . )

For the detail, we refer to [5].
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THEOREM 3. Ifw(t) = /1 on (~1,1), then
JCE
2.3.5
(235) B P U 0 S i G 0 N B
N R RV e A

Proof. For z € T, we get |dz| < 2(p+ p~1)df, and the L? bound
for the kernel K,

2 2r(p+p7 1) 77 (a1(p; + cos8)?
[ st < |, (a2(p) — cos 26)(azns1(p) + con(2n + 1)0)

Setting t = €*?, we see that dt = itdf and

/ o (a1(p) + cos§)? o
o la2(p) — cos20][azny1(p) + cos(2n + 1)6)

_ 1/ t27(t2 + 2a1 (p)t + 1)* it
T Jo (1% = 2aa(p)t2 + 1)(#47+2 4 2a9, 4 (p)2nHL 4 1)

where C is the unit circle, and applying the residue theorem, we get

1 2 (t+ p)(t + ) dt
— ;A (t — p)(t — p"l)(t2n+l + p2n+l)(t2n+l + p—(2n+1))
1 2n+1
_ . -1 —1 2n+1 __
= —g2m Res(f,p™") + Zl Res(f,—p™ w;)|, wj =-1
J:

where Res(f,z) denotes the residue value of f at .
To calculate the value 22"“ Res(f, —p~'w,), let £22+1 4 (
(t—2z1)(t—29) - (t - z2n+1) then we have

1\2n+1 _
p) -

Res(f,-—le)
P

= g(zj)(

zj —z1) (25 — 25-1)(25 — zj41) - - (25 — Zong1)
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£ (t+p)(t+1)
Where g(t) (f p)(t— )(t2"+1j-p2"+1} .
Since H1§i§2n+1( i —2zi) = (2n+ 1)212-", we calculate residue of f at

]
~%wj in the form

1 1 (2 +p)(25 + 3)
Res(f,—;wj) - [

(2n +1)(p>nH! — - (2 = P)(zj — )
We have the residue by elementary calculation;

(p+3)
(- D+t

1
Res(f,~) =
es(f. )

+;z—r]r;“r).

For z; = %wj and w2"+1 = —1, it follows that

2§1 (25 + p)(2; + 2§1 w; + p U)j +1)
j=1 (ZJ )(Z'I -5

2n+1

b 20%(p? +1 2(1 4 p?
22[14- . 5 T J, a = ,0(2p ),b: ( p).
’U)j—-p U)j—l

Jj=1
Therefore we get

1 A (25 + p) (25 - 1)
(2n + 1)(pnt! — P a5T) =1 (2 = p)(z; — 3

1 (p+ 1)

(PP = o) (0= )P+ )

2n+1 —(2n+1)z"
where using 351" L = {Znt wintl

w;—x 1+12"+1 [k

the L? bound for the kernel K,

J2CE
r

c2mp+p7h) /2’r (a1(p) + cos 6)* do
< p2n+1 o (a2(p) — c0s260)(azni1(p) + cos(2n + 1)6)

B 8r3(p+ p~1)? At (p+ p~1)

a [(p— PP T)  (pntz 1) |7 0

?

= - 1. We have proved
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REMARK. The well-known identity for Jacobi polynomials, 7r(ﬂ a)( )
= (-1 (2), implies [K(2)| = K17 (~2)] = |K)(~2)|
Thus for the case @ = —8 = 1, we have the same L? bound (2.3.5) for
the kernel K.

3. Example

In this section we apply the results in section 2 to obtain the L2
error estimate for Gaussian quadrature.

EXAMPLE.
1 1 /7@
1 11—t 1 —t2
I)/ —— ) —— dt, IT) -\{ dt.
L 2—tV 1+t o 2t
I) We consider w(t) = } T 25 the Jacobi weight with parameter

= —f3 = 1. To bound f on the elliptic contour T, note that

1 1 1
= < < . z€T
A e e 1

Therefore we get the error bound in the form

132 —1
|<2\/T\/ 2m{p+p1) _mlpt+p!)

p p——l 4n+2 + 1) (p4'n+2 — 1)

1
3.1 X ——
3 2-3lp+p1)
_ 2
wheree—-ﬁp—_—l, 1<p<2++/3.

IT) We consider w(t) = (1—2)* as the Jacobi weight with parameter

a=[0= % and we get the error bound in the form

- />+p‘1 )(p* +p 1
32) 1R < VETEG ¢ shla

-1 2-3(+p1)

Wheree:p+—;~1, 1<p<2++3.
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Table 3.1 (On the ellipse)

fa) =g wt) = (1-8)3(1 + 1)}

n bound rho True error SHUpremum norm

5 52100 -5)  3.3984  14906( -6)  5.4156( -b)
10 1.9254(-10) 3.5558  2.8436(-12)
15  5.4507(-16) 3.6123  -1.1102(-16)  5.6433(-16)

Table 3.2 (On the ellipse)

flo) =5 wt) =1 -1 +4)"3

n bound rho True error supremum norm

5  1.2187( -4) 34066 18543( -6)  1.8257( -4)
10 4.4492(-10) 3.5579  35374(-12)  6.5903(-10)
15 1.2544(-15)  3.6133  -6.6613(-16)  1.8507(-15)

We have expressed the error bound as a parameter of p. Number

in parentheses of Table 3.1 and Table 3.2 indicate decimal exponents.
As n incresses, the number p approaches to 2 + /3. This is due to
the nature of weak singularity of denominator factor. And we have
compared with the supremum norm(Gautschi and Varga [5]).
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