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Abstract Gradient-type algorithms for adaptive IIR
notch filters are very attractive in terms of both perfor-
mances and computational requirements. Generally, it 1s
quite difficult to assess their performances analytically.
There have been several trials to analyze such adaptive
algorithms as the sign and the plain gradient algorithms
for some types of adaptive IIR notch filters, but many
of them still remain unezplored. Furthermore, analysis
techniques used in those trials can not be directly applied
to different types of adaptive IIR notch filters.

This paper presents a detailed performance analysis of
the sign algorithm for a well-known adaptive IIR notch
filter with constrained poles and zeros, which can not
be done by just applying the related ezisting analysis
techniques, and therefore has not been attempted yet.
The steady-state estimation error and mean square er-
ror (MSE) of the algorithm are derived in closed forms.
Stability bounds of the algorithm are also assessed. Ei-
tensive simulations are conducted to support the analyt-
ical findings.

1 Introduction

Adaptive estimation of frequency of sinusoidal signal is of
essential importance in many engineering fields, such as
digital communications, radar, sonar, control, biomed-
ical engineering and so on. Adaptive IIR notch filter-
ing for frequency estimation has attracted a lot of re-
searchers in signal processing community, since adaptive
IIR notch filters require considerably fewer filter coefhi-
cients compared with their FIR-type counterparts for the
same notch bandwidth and similar performance.

There are many adaptive algorithms developed to ad-
just the filter coefficients of the IIR notch filters [1-6],
such as the sign algorithm (SA) [2], the plain gradient
algorithm (PG) [4], the normalized gradient algorithm
(NG) [2], the recursive prediction error algorithm (RPE)
[1], the lattice algorithm [3], the p-power algorithm (5],
the memoryless nonlinear gradient algorithm [6] and so
on.

Due to the IIR nature of the IIR notch filters, their
performance analysis is generally much more difficult
than that of their FIR counterparts, and a lot of is-
sues therefore still remain unexplored. Nonetheless, so

far, several trials have been made to analyze the perfor-
mances of some of the adaptive algorithms. Petraglia
et al. [7] presented some analytical results of the PG
for the bilinear IIR notch filter. Although their work
showed a possible way to analyze the gradient-type algo-
rithms, the analytical results obtained from the gradient
linearization is not accurate due to the bold approxima-
tions involved. Nishimura et al. [8] proposed a similar
technique to analyze the performance of the SG and the
PG for an IIR notch filter that is similar to the lattice
notch filter in form. Their analytical results fit the simu-
lated values reasonably well. However, it has been found
that the gradient linearization techniques used by Pe-
traglia and Nishimura can not be applied to analyze the
SA and the PG for the constrained IIR notch filter [9].
The performance of the PG for the constrained IIR notch
filter has been analyzed in [9], but the SA has not been
considered.

This paper presents a detailed performance analysis
of the SA for the constrained IIR, notch filter. Difference
equations governing its estimation error and MSE for
the filter coefficient will be derived, assuming that, the
notch filter output and the noise signal in the gradient
signal, the notch filter output and the estimation error
of the filter coefficient, are jointly Gaussian distributed,
respectively. The steady-state bias and MSE expressions
in closed form will be derived from these difference equa-
tions. Stability bounds for the step size parameter will
be considered from two different standpoints. Extensive
simulations will be provided to confirm the analytical re-
sults.

2 Adaptive IIR notch filter and
the SA

The second-order adaptive IIR notch filter with con-
strained poles and zeros [1] is expressed by the following
transfer function
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Hw(z) = 14 paz=1 + p2z—2

(1)

where p is a pole contraction factor (pole radius) over
(0, 1) which controls the notch bandwidth of the filter. a
is the filter coefficient whose true value is calculated by
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ag = —2cos{wp). wy is the frequency of a noisy input
sinusoidal signal

z(t) = Acos(wot + 8) + v(t) (2)

where v(t) is an additive white Gaussian noise. # is the
phase of the signal, distributed uniformly over [0,2r). A
is the amplitude of the sinusoid. The adaptive IIR notch
filter (1) is used to estimate the frequency of the sinusoid.
The SA algorithm that updates the filter coefficient is
given by

@t +1) = (1) - p sgn(e(t))s(!) (3)

where sgn(-) is a sign function. e(t) is the output of the
notch filter, generally referred to as error signal. p is a
step size parameter that controls the magnitude of the
recursion. a(t) is the estimate of the filter coefficient a.
s(t), the gradient signal, is calculated by

s(t) = —pe(t — 1) + 2(t — 1). (4)

This SA algorithm is known to present very slow con-
vergence but be the most cost-efficient among the many
gradient-based algorithms. It may be applied to applica-
tions where slow convergence can be tolerated and imple-
mentation cost is very limited. So far, our insight into its
performance is almost solely from sirmmulation experience.
It 1s very difficult to derive analytical expressions on the
performance of this algorithm. This paper is devoted to
challenging this issue.

A: Steady-state error and gradient signals

According to [9], at steady-state, the error and gradient
signals may be expressed by

e(t) = ABS,(t) cos{wot + 0 — ¢)
— pAB?82(t) cos(wot + 0 — 2¢) + v1(t),
s(t) = Acos(wot + 8 — wo) :
— pABé,(t) cos(wot + 0 — wo — ¢)
+ p2AB252(t) cos(wot + 0 — wo — 2¢) + va(t)

(5)
(6)

where

(7)

34(t) = a(t) — ao,
1

B = : , 8
(1= p)V/(1+p)? = 4pcos?wq ®
¢07 Wo Sg'
¢ = - 9)
T+ ¢o, wo > —
2
b0 = tan-1 LT RIsinwo (10)

1—p)coswy

v1(t) is a zero-mean noise signal at the output of the
notch filter whose variance is ¢2 . va(t) is also a zero-
mean noise signal in the gradient signal whose variance
is 02,. The correlation between these two noise signals

is indicated by Ri . See [9] for their calculations.

3 Performance analysis

In this section, first, two difference equations for the es-
timation bias and MSE of the filter coeflicient will be
established. Then, the steady-state estimation error and
MSE will be derived. Finally, stability bounds will also
be considered from two points of view.

A: Estimation bias

Using (5-7) in (3), the difference equation for conver-
gence in the mean for the estimation error d,(t) can be
expressed as

E[da(t + 1))
= FE[d4(t)] — pAcos(wot + 6 — wg)M =h()
+ ppAB cos(wot + 0 — wo — ¢) E[sgn(e(t)) d4(t)] =1t
— pp? AB? cos(wot + 0 — wo — 2¢) E[sgn(e(t)) 82(t)]
— uEfsgn(e(t)) v®)] _, , -

)

To calculate I;(t), Io(t), Is(t), and I4(t), we need to
have further information on the probability distribution
of e(t), probabilistic relations between e(t) and é8.(t),
and between e(t) and vo(t). When v(t) is Gaussian dis-
tributed, we have found that e(t) follows the Gaussian
distribution, and e(t) and d,(t), e(t) and v2(t), are jointly
Gaussian distributed, respectively. Mathematical details
are omitted due to space limitation. Following these find-
ings, we have, after very complicated and technical cal-
culations,

I (t) = 2sgn (’;—) erf (

L(t) = 2E[84(t)]sgn <g—) erf ( He

e

12 Q. 1 (e

+ po— &exp{__ (H_
T 0. 2 \ 0.

Is(t) = Q%ZJSyn (%) erf <

e e

+2E%[5,4(t)]}sgn

f
+ 2E[«sa<t)1%“—°\/§ exp{—é
_ 1 (

(15)

In the derivations of (12}—(15), it is also assumed that
34(t) and v1(t), d,(t) and vo(t) are uncorrelated to each
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other, respectively. Furthermore, terms of §,(t) with or-
ders equal to or higher than 3 are ignored for analyti-
cal simplicity. Explanations to several variables such as
erf(-), Qes, , etc. in (12)—(15) are omitted to save space.
Substituting (12)-—(15) back to (11) and ignoring many
insignificant terms, one ultimately has

E[§a(t+ 1)] = (1 = pehr1) Efda(t)] (16)
+ pY12 E[85 (1)) + pm
where
2
P11 = \/%il cos(wg — ), (17)
22
Y1 = \p/j;_;fvl {cos{wo — 2¢) + coswy}, (18)
m = _\/?zl_’z . (19)

B: Estimation MSE

From (3) and (7), we have

BIS2(t+1)] = BI5(0)] - 2pEBat)sgn(e®)s®)] _,,
+ 12 E[s(1)] (20)

=M2(t) '

After very complicated calculations, M (t) and M, (¢)
can be worked out under the assumptions used in the
derivations of {12)—(15), as follows
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+ p2A2BQE[52(t)] cos2(w0t + 0 —wy— @)
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+ Eda(t)]

Mo(t) = (22)

— 2pA’BE[8,(t)] cos(wot + 8 — wp)
x cos(wpt + 8 — wp — @)
+ 2p2A?B2E[62(t)] cos(wot + 6 — wy)
x cos{wot + 8 —wyg — 2¢) .
Putting (21) and (22) back into (20) and removing the

insignificant terms, we get the difference equation for the
convergence in the mean square, as follows

E[82(t + 1)] = —ptba1 E[8a(2)]

+ (1= pba2) E[S2()] + p’n2 (23)
where
2 2R
VYo = \ﬁ =2, (24)
T oy,
2 A’B
Yoo = \/; o, cos(wo — ‘75): (25)
m= 3440l (26)

C: Steady-state estimation bias and MSE

Next, we consider the steady-state estimation bias and
MSE, utilizing the difference equations for the conver-
gences in the mean and mean square that we have estab-
lished above. At steady-state, using E[d;(t + 1)] |00 =
E[5()]ltvoo = E[da(c0)] and E[5(t + 1)]lse0 =
E[62(t)} [t00 = E[62(00)] in (16) and (23), and solv-
ing the resultant equations as simultaneous equations,
we reach

U212 + MY
VY1122 + Y12¥21

E[84(c0)] = (27)

wipYil — niva
Yi1¥a2 + Yr2¥n

These are the closed form expressions for the steady-state
estimation error (bias) and MSE.

(28)

Eféq(o0)] =

D: Stability bounds

Here, we move to the next step to derive stability bounds
for the step size parameter, now that we have established
the difference equations for the convergences in the mean
and in the mean square.

(a) Stability bound A

Putting (16) and (23) together, a simultaneous differ-
ence equation set can be produced. Allowing the eigen-
value to be A = —1 results in a second-order equation
about the step size parameter u, and its solutions are

(Y11 + ¥22) £ /(P11 — Ya2)? — 4129
P11¥22 + Y1290 ’

A meaningful stability bound can be easily derived from
the above equation.

M2 = (29)

(b) Stability bound B



If we ignore the influence of the estimation bias in (23),
then |1 — piqs| < 1 must be satisfied to ensure the con-
vergence of the algorithm in the mean square sense. This
readily leads to the following stability bound

2
O<p<—=—. (30)

22
On the other hand, if we ignore the influence of the MSE
in (16), then |1 — py1,]| < 1 must be satisfied to ensure
the convergence of the algorithm in the mean sense. This
gives another stability bound

2
O<p< —. (31)

11
Therefore one more stability bound may be obtained by
selecting the smaller one from (30) and (31).

D Simulation results

Here, we show some typical stimulation results. Fig.1
shows comparisons between the theory and simulation
for the estimation bias and MSE versus the pole radius
p. It can be noticed that the analytical estimation bias
expression presents excellent fit to the simulated values
over the entire range of p. It is also clear that the ana-
lytical estimation MSE also fits the simulation very well
on the whole.

Fig.2 presents comparisons between the two theoreti-
cal stability bounds obtained from (29)—(30) with their
simulated values. Although there are some differences
between them, the two theoretical stability bounds pro-
vide good estimates on the whole for the simulated sta-
bility bound of the algorithm when the additive noise is
not large.

4 Conclusions

In this paper, closed form expressions for the steady-state
estimation bias, the MSE and the stability bounds have
been derived for the SA updating the second-order IIR
notch filter with constrained poles and zeros. Simulation
results have been shown to indicate the effectiveness of
the analytical expressions. Tracking analysis of the SA
is an open topic for further explorations.
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Fig.1 Comparisons between theory and simulations
versus p ; theory: solid line, simulation: star,
(u=10x10"7, wo =027, SNR=10[dB], A =2,
6= %, 100 runs ) .
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Fig.2 Comparisons between theory and simulations
versus p for the stability bounds; theory: solid line,
simulation: diamond,

(wo =0.2r, SNR=10[dB], A=V2, 6= %, 100 runs ) .



