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The NURBS Human Body Modeling Using Local Knot Removal
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Abstract: These days consumers’ various demands are accelerating research on apparel manufacturing system including
automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body
from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these
functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the
decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the
unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation crite-
rion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the applica-
tion of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control
points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and
a clothing simulation system through the low level control of NUBS or NURBS.
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Introduction

Nowadays, for the garment manufacturing industry, there
are extensive research of surface reconstruction of human
body point data obtained using a three dimensional scanning
device [1,2]. Variations and exceptions in the shapes of the
human body, however, make automatic human body modeling
extremely difficult. There are two primary stems for this
problem. One is segment modeling which divides the human
body into a number of segments [3]. The other is polygonal
mesh reconstruction [4]. In this study, segment modeling is
selected because the appearance of major parts of the human
body is cylindrical surface. There are many methods for
surface fitting as well. The most representative methods are
implicit reconstruction techniques [S] and surfaces from
contours [6]. We use surfaces from contours because isocurves
of surface in parallel with sectional curves have many
advantages for pattern generation. Accordingly, first, torso is
selected as a segment and torso surface is reconstructed from
sectional curves by skinning [7]. However, the skinning method
using contours or sectional curves accompanies with explosive
increment of non-necessary data and has a problem in the
arbitrary determination of the control points of each sectional
curve for approximation. In addition, the irregularity of sectional
curve data causes the irregular control point distribution of
sectional curves. Therefore, in this study, a methodology has been
proposed to tackle the following issues in human body modeling.

1) The error bound dependent determination of control points

for well posed approximated curves

2) The restriction of explosive increase of control points

without recognizable distortion of the human body

3) The reduction of control point concentration of sectional

curves.
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NURBS Approximation

The Least Square NURBS Approximation

In a parametric curve such as NUBS or NURBS, the
fundamental condition that determines the shape of the
curve is the number of control points and their positions.
Meanwhile, we used surface reconstruction technique named
skinning. Skinned surface [8] which is produced by skinning
must pass exactly through the given sectional curves. Thus,
it is important to determine the control points of sectional
curves for defining the shape of the skinned surface. Skinned
surface has a critical condition: all sectional curves must
have the same number of control points. To satisfy this
condition, the number of control points for all sectional
curves can be set in advance. In spite of the simplicity of this
method, it is somewhat difficult to find in advance how
many control points are needed. The number of control
points determined beforehand may not be sufficient for
complex curves. On the contrary, it can be too large for
representing simple curves. At the same time, it is necessary
to repeat personal approximation process to find the proper
number of control points. A method for avoiding these problems
is to apply a least squares approximation with error bounds.

Assume that degree p > 1, control point index » > 0, and
Q,,...,Q,(m>1) are given. Then, a p-th degree non-
rational curve is as follows.

(D

C(u) satisfies Q, = C(0), Q,, = C(1), and the remaining Q;
can be approximated by the least squares method, i.e.,

r="S Q- Cctf
k=1

is the minimum with respect to the # + 1 variables. The ¢, are

Cw) = 3N, (P, ucl0,1]
i=0
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parameter values predetermined by the cord length.
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where, P, and P, are equal to Q, and Q,, respectively
because the knot vector is non-uniform knot vector.
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According to the standard least square method for mini-

mizing f, the derivatives of /' with respect to the n — 1 points
of P ! is

m—1 n—1
% =y [-—2N,’p(tk)Rk+2N,’p(tk)ZNi,p(tk)P,) (5)
! k=1

i=1

And, is equal to zero. Therefore equation (5) becomes

m—1 m—1in-1
Z Nl,p(tk)Rk-'_ z ZNZ,p([k)Ni,p(tk)Pi =0 (6)
k=1 i

k=1li=1
It follows that
n-1{m-1 m—1
2(2 Nl,p(tk)Ni,p(lk))Pi = Z N, (IR, N
i=1\k=1 k=1

The matrix notation of equation (7)
(N'N)P = R (8)

An approximation curve can be represented using control
points calculated from equation (8). A three dimensional
scanning device manufactured by CyberWare was used to
produce a number of sectional point-clouds at every 0.002 m
interval representing the surface of a human body. Figure 1
represents raw data, which are 21 sectional point-clouds
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Figure 1. Cross sectional point data of a torso.
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Figure 2. An approximation curve for the selected sectional curve.

extracted from all point-clouds within the range from 0.788 m
to 1.388 m in height. Figure 2 is an approximation curve
obtained at 1.298 m in height by setting the number of control
point at 35 arbitrarily.

Determination of the Number of Control Point with
Error Bound

When sectional data are approximated by the method
introduced in the previous section, a reasonable criterion for
approximation is necessary. For this purpose, in our approach,
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Figure 3. Effects of error bound on the shape of approximation curves: (a) error bound = 0.05, (b) error bound = 0.01, and (c¢) error bound =

0.007.

the deviations of a sectional curve from each measured point
was calculated by point projection [9] and then approximation
and iteration were continued until the maximum deviation
became less than the specified error bound. The first step
toward approximating a sectional curve is to interpolate the
given sectional point data. When the interpolation process is
completed, the knots of the interpolation curve can be removed
as many as possible while maintaining the specified error
bound by knot removal [10]. Next, we iterate approximation
by increasing the number of control points until the maximum
deviation is within the user specified error bound. Figure
3(a), (b) and (c) are approximation curves with 0.05 m, 0.01 m
and 0.007 m error bounds respectively. The approximation
curves in Figure 3(a), (b) and (c) have 9, 23 and 27 control
points respectively. These results clearly show that the curve
is approximated by its appearance within the specific error
bound.

Local Knot Removal ;

The unusual concentration of point data is shown on the
left side in Figure 2. Besides, the control point concentration
can be found on the side, in which the curvature is low and
the density of point data is high. The fact that there is a
region with low curvature and high density of control points
make NURBS approximation inefficient. The chord length
method [9] for determining #, in equation (2) causes this
phenomenon. To reduce the concentration, we use local knot
removal that removes knots within a specified region. If knot
removal can be applied to a certain region, knot removal is
much more efficient than the process removing knots in entire
knot vector. That is, local knot removal can restrict additional
deviation within the specified region. Figure 5 represents
knot values for 21 sectional curves. At domain [0, 1], the left
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Figure 4. Membership functions: (a) crisp set, (b) fuzzy set.
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Figure 5. The distribution of knot values.

region with many knot values has the problem of control
point concentration. In addition, this region must not have
many control points because it is a low curvature region. Local
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Table 1. The number of control points before and after local knot
removal (The number of control points before local knot removal:
Ny, the specified interval for local knot removal: €, the number of
control points after local knot removal: N,)

Height Percentage
N ° N T
1.388 25 [0,3.8279705¢-001] 20 20.0
1.358 51 [0,4.0626891e-001] 34 39.2
1.328 37 [0, 4.0246232¢-001] 25 35.1
1.298 30 [0,4.0292069e-001] 20 333
1.268 25 [0, 4.0824982¢-001] 21 20.0
1.238 47 [0, 4.6223488¢-001] 31 36.1
1.210 31 [0,4.3620830e-001] 23 21.6
1.178 16 [0, 3.8223445¢-001] 14 18.7
1.148 18 [0,4.2867241¢-001] 14 222
1.118 11 [0,4.2867241e-001] 11 0.0
1.088 21 [0, 3.8138002¢-001] 15 28.5
1.058 14 [0,3.7706482¢-001] 12 214
0.028 26 [0,4.4109668¢-001)] 19 26.9
0.998 36 [0,4.3498176e-001] 27 333
0.968 19 [0,4.1593721e-001] 16 26.3
0.938 29 [0,4.2583999e-001] 19 37.9
0.908 36 [0,4.2042784¢-001] 25 35.8
0.878 32 [0,4.3851441e-001] 20 37.5
0.848 53 [0,4.2353599¢-001] 33 433
0.818 50 [0, 4.2834535e-001] 36 32,0
0.788 40 [0,4.0074481e-001] 30 26.8

knot removal consists of two stages. In the first stage we
cluster the knot values to two groups. One is dense and the
other is sparse. The second stage is general knot removal
process except that the removal region is limited. In this
study, for clustering in the first step, we use the classical fuzzy
c-means algorithm [11]. A fuzzy set is a pair (X, A), where 4:
X—Tand I=0,1] and X is a non-empty set. 4 is called the
membership function [12]. The family of all fuzzy sets on
the X will be denoted by L(X). Thus L(X)= {4|4:X—>[}.
The notion of fuzzy set has been introduced by L.A. Zadeh.
A(X) 1s the membership degree of x to 4. It may also be
interpreted as the plausibility degree of the affirmation ‘x
belongs to 4. If A(x)=0, x is ‘definitely not in 4" and if
A(x)=1, x is ‘definitely in A’. The intermediate cases are
‘fuzzy’. Figure 4 is the graphical representation of the
membership function. Thus, fuzzy ¢-means algorithm is to
make two fuzzy sets representing two clusters respectively.
The membership degrees of these fuzzy sets are determined
according to the similarity between any measured data and the
center of the clusters. First, we map [0, 1] to [0, 1][0, 1] by
using parametric representation for a circle.

{x(t) = sin(7)

<t< 9
¥ = cos(ry 5P ®
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Figure 6. The result of clustering at 0.818 m in height.

Circular mapping is for uniting two dense regions that
may be placed at the ends of [0, 1]. Next, the fuzzy c-means
algorithm clusters the circular data to two regions. Figure 6
is the result of clustering the knots of a sectional curve at
0.818 m in height. We can sclect easily a sparse region based
on the mean distance among the knots. The results of
clustering for each sectional curves are shown in Table 1.
Table 1 also shows the comparison of the number of control
points between when local knot removal is adopted and
when it is not. Figure 7 is the result of sectional curve
approximation before local knot removal. Figure 8 is the
result after local knot removal. 10 curves whose control
points had been removed most plentifully were selected to
verify the effect of local knot removal clearly. From the
figures, we can see that additional data have been reduced in
limited region.

Surface Fitting

For generating a skinned surface, the sectional curves
constructed in the previous section must have the same
number of control points and has to be defined over the same
knot vector. Therefore, all knot vectors of the sectional curves
need to be united. By uniting knot vectors using a knot
insertion method called knot merge iteratively, only one knot
vector can be obtained. This merged knot vector satisfies the
important condition that entire interior knots must have
single multiplicity [9]. A simple example is presented as
follows

{0,0,0,0,0.5,1,1,1,1}

{0,0,0,0,0.2,03,0.6,0.8,1,1,1,1}
{0,0,0,0,0.2,05,0.7,1,1,1, 1}

= Knot merge

=1{0,0,0,0,02,0.3,05,0.6,0.7,08,1,1,1, 1}

{0, 0, 0, 0, 02, 0.3, 0.5, 0.6, 0.7, 0.8, 1, 1, 1, 1} has
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Figure 7. Some sectional curves before local knot removal.
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Table 2. Results of tolerance allocation (number of knots after knot
merge: N,,,, number of knots after knot removal: N,;)

e.=0.007 e.=0.007 ¢,=0.007
Local knot removal was not carried out  ¢,=0.007 ¢;,,=0.006
e,=0.007 e,=0.007 e,=0.007
Noim N Nam  Na Nom N
571 27 366 34 385 28

Figure 9. Torso surface with cross sectional curve.

multiplicity of 1 for all interior knots. In other words, the
interior knots of the result knot vector are the union of the
interior knots of all knot vectors of the sectional curves.
However, knot merge results in an astonishing number of
control points of sectional curves. The increase of the number
of knot vector components increases the number of control
points. Thus, after merging knots, a knot removal procedure
has to be executed within the specified error bound for
removing surplus control points. In this study, we compared
two cases of surface fitting for verifying the effect of local
knot removal on skinning. One is the result of surface fitting
using local knot removal but the other did not use local knot
removal. Table 2 summarizes the result, in which e, is
tolerance for sectional curve approximation, e, is tolerance
for local knot removal, and e, is tolerance for knot removal
after knot merge. As shown in Table 2, it turns out that the
case without using local knot removal is much more efficient
in that the more knots is removed. This is because deviation
from measured point data increased additionally when local
knot removal was carried out. Thus, we could improve removal
performance to some degree using local knot removal tolerance
lower than the final tolerance. Figure 9 illustrates the body
surface and its the sectional curves at different locations. The
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body surface also satisfies all section curves.

Conclusions

We have presented a method of constructing the human
body for digitized CAD of apparel. There are two major issues
in this method. One is the decision of the number of control
point for each sectional curves with error bound and the
other is the local knot removal for reducing the concentration
of control points. The method presented for determining the
number of control points according to specified error bounds
facilitates each sectional curve to reflect its unique shape
features more appropriately in such a way that the designer
does not need to rely on the trial and error method. In addition,
local knot removal was presented for removing control point
concentration according to the irregularity of distribution of
point data. While most of the previous researches on curve
fitting did not adopt fuzzy logic algorithm, to determine the
control point concentrated region, we have applied fuzzy
clustering. Although it did not affected notably the number
of control points of skinned surface, for saving sectional
curve data or for contour trace using sectional curve data, it
could reduce control points efficiently without unintended
distortion in view of effective reduction of control points. In
future study for reconstructing the human body, if an improved
algorithm is developed for determining a control point con-
centration region considering the wiggle of curves and knot
density together, we may approximate curves much more
effectively and reconstruct the human body using NURBS
sectional curves.
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