• Title/Summary/Keyword: Electron probe micro-analyzer(EPMA)

Search Result 54, Processing Time 0.029 seconds

Effect of SLS Glass for Bulletproof Materials by Ion Exchange Technique (방탄소재 활용을 위한 SLS 유리의 이온교환 효과)

  • Kim, Tae-Yoon;Shim, Gyu-In;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.114-119
    • /
    • 2010
  • There are a number of studies on chemically strengthened glass. Most of them are strengthened in molten salt bath below transformation range of glass. This research is distinguished from the aforementioned studies in that single $KNO_3$ powder was used by employing screen printing technique. In this study soda-lime-silicate(SLS) glasses for bulletproof glass application with various thicknesses were used. The maximum value of the bending strength is 791MPa heat treated at $480^{\circ}C$, which is about 4.3 times higher than the parent glass, which is the highest strength of all soda-lime glasses. In this study, it is also observed that Vickers hardness increased to $657H_v$, which is about 15% higher than the parent glass($568.7H_v$) and fracture toughness was not changed. Depth profiles measured by electron probe micro analyzer(EPMA) showed a correlation between the migrations of $K^+$ ions with bending strength of ion exchanged glasses.

Effects of cooling rate on Microstructure and Bond Strength in WC-Co/Cu/SM45C steel joint (WC-Co/Cu/SM45C강접합에 미세조직 및 접합강도에 미치는 냉각속도의 영향)

  • 정승부;양훈모
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.104-111
    • /
    • 1999
  • The interfacial microstructure and bond strength were examined for WC-Co/Cu/SM45C steel join using a nickel-plated copper in vacuum at 1323K for 0.6ks∼3.6ks. After bonding, microstructure in bonding interface was observed by OM(Optical Microscopy), SEM(Scanning Electron Microscopy) and EPMA(Eelectron Probe Micro Analyzer). The oil cooling was carried out at 353K, the cooling rate in air and furnace was 22K/s and 4.4K/s. respectively. It was found that dendritic widths increased with the content of cobalt and bonding times at 1323K. As a whole, bond strength values at the same bonding condition decreased in this order: WC-13wt.%Co/SM45Csteel. WC-8wt.%Co/SM45Csteel and WC-4wt.%Co/SM45Csteel. The bond strength of WC-13wt.%Co/S45C steel joint in oil cooling was 273MPa. This value was greatly higher than those of 125MPa in furnace cooling and 93MPa in air cooling at 1323K for 0.6ks. The bond strength values were found to be closely associated with the content of cobalt in WC-Co and cooling rate.

  • PDF

A histomorphometric study on the effect of surface treatment on the osseointegration (티타늄 임플란트의 표면처리가 골유착에 미치는 영향에 관한 조직형태계측학적 연구)

  • Choi, Woong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.445-456
    • /
    • 2009
  • Statement of problem: Many studies have been conducted to improve the primary stability of implants by providing bioactive surfaces via surface treatments. Increase of surface roughness may increase osteoblast activity and promote stronger bonding between bone and implant surface and it has been reported that bioactive surface or titanium can be obtained through alkali and heat treatment. Purpose: The purpose of this study was to evaluate the stability of alkali and heat treated implants via histomorphometric analysis. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface, the other groups were treated for 24 hours in 5 M NaOH solution and heat treated for 1 hour at $600^{\circ}C$ in the atmosphere (group 2) and vacuum (group 3) conditions respectively. Surface characteristics were analyzed and fixtures were implanted into rabbits. The specimens were histologically and histomorphometrically compared according to healing periods and change in bone composition were analyzed with EPMA (Electron Probe Micro Analyzer). Results: 1. Groups treated with alkali and heat showed increase of oxidization layer and Na ions. Groups 2 which was heat treated in atmosphere showed significant increase of surface roughness (P<.05). 2. Histomorphometric analysis showed significant increase in BIC (bone to implant contact) according to increase in healing period and there was significant increases in groups 2 and 3 (P<.05). 3. BA(bone area) ratio showed similar results as contact ratio, but according to statistical analysis there was significant increase according to increase in healing period in group 2 only (P<.05). 4. EPMA analysis revealed no difference in gradation of bone composition of K, P, Ca, Ti in surrounding bone of implants according to healing periods but groups 2 and 3 showed increase of Ca and P in the initial stages. Conclusion: From the results above, it can be considered that alkali and heat treated implants in the atmosphere have advantages in osseointegration in early stages and may decrease the time interval between implantation and functional adaptation.

Microstructures and Thermal Properties of Water Quenched Thermoelectric Material in Bi2Te3-PbTe System (급속 응고 된 Bi2Te3-PbTe계 열전소재의 미세구조와 열전 특성)

  • Yim, Ju-Hyuk;Jung, Kyoo-Ho;You, Hyun-Woo;Kim, Kwang-Chon;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.502-507
    • /
    • 2010
  • In order to design nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system are investigated for their micro structure properties. For this synthesis, the liquid alloys are cooled by the water quenching method. Micro structure images are obtained by using an electron probe micro analyzer(EPMA). Dendritic and lamellar structures are clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. The increase in the $Bi_2Te_3$ composition ratio causes to change of the structure from dendritic to lamellar. The Seebeck coefficient of sample 5, in which the mixture rate of $Bi_2Te_3$ is 83%, is measured as the highest value. In contrast, the others decrease with the increase of the $Bi_2Te_3$ composition ratio. Meanwhile, p-type characteristics are observed in sample 6, at 91%-$Bi_2Te_3$ mixture rate. The power factors of the all samples are calculated with the Seebeck coefficient and resistivity.

Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering (Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향)

  • Kim, Yu-Mi;Hong, Sung-Kil;Choi, Se-Weon;Kim, Young-Chan;Kang, Chang-Seog
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.169-173
    • /
    • 2012
  • Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

EPD(Electrophoretic Deposition)를 이용한 Ni-$Al_2O_3$ 경사기능재료(FGM) 코팅에 관한 연구

  • Kim, Hyeong-Seop;Yang, Seung-Gyu;Lee, Seon-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.104.2-104.2
    • /
    • 2012
  • 이종 재료의 접합에 대한 연구는 단일 재료에서 얻을 수 없는 물리적/기계적 특성과 이종 재료의 우수한 특성을 얻을 수 있다는 장점이 있어 국내외 적으로 연구가 활발히 진행되고 있다. 이러한 이종 접합 기술은 구조재료와 에너지 변환분야에 가장 많이 사용되고 있으며, 그 외 광촉매와 Thin film, 경량구조재료 등에도 사용되고 있다. 그 중 FGM(Functional Graded Materials)는 조성의 점진적인 변화를 통하여 접합하는 방법으로 이종 재료 접합 시 발생하는 내부 응력을 해소해줌으로써 적합한 방법이라고 할 수 있다. FGM 제작에 사용되는 방법으로 널리 알려진 것들로는 plasma spraying, 원심주조, 분말 야금법, PVD, CVD 그리고 EPD(electrophoretic deposition) 등이 있다. 이중에서 EPD는 수용액이나 유기용매와 같은 분산매체 중에 콜로이드 입자의 표면에 대전되는 전하를 이용하여, 외부에서 전장을 걸어서 입자의 움직임을 제어하는 기술이다 EPD는 코팅 속도가 상대적으로 빠르고 두꺼운 코팅 층 제작이 가능하다. 또한 바인더, 윤활제 또는 가소제를 사용하지 않고 다양한 종류와 모양의 기판 위에 균일한 코팅이 가능하다는 장점이 있다. 본 연구에서는 Ni substrate를 이용하여 그 위에 Ni과 $Al_2O_3$의 조성을 점진적으로 변화시켜 FGM을 EPD 방법으로 코팅하였다. 여기서 사용된 Ni은 높은 녹는점과 좋은 연성으로 인해 성형이 용이하여 구조재료로 적합하며, $Al_2O_3$는 고내열성과 내부식성을 가지며 경도가 높다는 장점이 있다. 본 연구에서는 EPD 방식을 이용하여 Ni/$Al_2O_3$ FGM을 코팅하였으며, 코팅 후 발생하는 substrate와의 접착력 문제를 해결하기 위해서 건조 방식과 substrate의 표면 상태를 최적화하여 다층의 Ni/$Al_2O_3$ FGM을 코팅 및 소결하였다. Zeta-potential 측정을 통해 electrophoretic mobility와 suspension의 분산 안정도를 평가 할 수 있었으며, X-ray 회절 분석(XRD)을 통하여 Ni 의 환원 여부를 확인하였다. 또한 Scanning electron microscopy(SEM) 분석을 통하여 미세구조 분석을 하였고, 최종적으로 Electron Probe Micro Analyzer (EPMA) 를 이용하여 다층 구조의 조성변화를 확인함으로 Ni/$Al_2O_3$의 FGM 코팅이 이루어졌음을 확인하였다.

  • PDF

Change in surface of primary tooth using different type of toothpaste (치약 종류에 따른 유치의 표면 변화)

  • Choi, Jung-Ok;Nam, Seoul-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.2
    • /
    • pp.281-286
    • /
    • 2014
  • Objectives : The aim of this study is to evaluate the surface changes of enamel specimen, tooth structure by toothpastes in child and adult. Methods : Experimental teeth were collected from extracted human primary teeth. 120 enamel specimens were prepared by cutting the teeth into $2{\times}3{\times}2mm$ blocks using diamond saw and the specimens were assigned to 3 groups. Group 1 was used as control with no treatment. Group 2 was treated with child toothpaste and Group 3 was treated with adult toothpaste on primary enamel surface for 3 minutes daily over 4 weeks. The specimens were immersed into individual container having artificial saliva and the artificial saliva was changed every day. The electron probe micro analyzer(EPMA) provided weight percent(wt%) of calcium(Ca) and phosphorous(P) on enamel surface. The morphology was analyzed by scanning electron microscopy(SEM). Data were analyzed by one-way analysis of variance(ANOVA) and Tukey's test post-hoc test using SPSS(Version 20, SPSS Inc., Chicago, USA). Level of significance was set at 0.05. Results : The surface changes of the primary teeth revealed a significant difference during 4 weeks. Calcium(Ca) and phosphorous(P) levels were found the weight percent difference and a rough enamel surface was seen on SEM after adult toothpaste application. Conclusions : The changes in Ca and P and the morphological surface were affected by the primary tooth treated with adult toothpaste. Enamel surface showed significant differences during 4 weeks.

Effect of Specimen Area on the Corrosion Rate of Low Alloy Steel (저합금강의 부식속도에 미치는 시편 면적의 영향)

  • Kim, Min-Jun;Jang, Young-Wook;Yoo, Yun-Ha;Kim, Jong-Jip;Kim, Jung-Gu
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • Effects of specimen area on the corrosion rate of low alloy steel were studied in sulfuric acid solution. The corrosion behavior of specimen was tested by electrochemical impedance spectroscopy (EIS), linear polarization resistance measurement (LPR) and potentiodynamic polarization measurement. The surface was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electron probe X-ray micro analyzer (EPMA). As surface area was increased, corrosion rate was increased by the effect of small anode-large cathode.

Interface and Surface Properties by Surface Treatment of Zirconia for All Ceramic Crown (전부도재관용 지르코니아의 표면처리에 따른 표면특성 및 계면특성 관찰)

  • Kim, Chi-Young;Chung, In-Sung;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Purpose: This study was to observe the surface and interfacial characteristic of Zirconia by surface treatment. And it was observed the roughness and contact angle according to processing, and the interfacial properties by surface treatment on zirconia. Methods: The oxide formation and ion diffusion between core and veneer ceramic were determined by the X-ray Dot Mapping of EPMA(Electron probe micro analyzer). The roughness was measured by 3D Digital microscope and the contact angle according to processing of zirconia was observed using distilled water on the surface. Results: The surface roughness of the specimens Z04, Z12, Z15 was measured $0.67({\pm}0.03){\mu}m$, $0.50({\pm}0.12){\mu}m$, $0.35({\pm}0.09){\mu}m$, respectively. As results of contact angle test, Z04, Z12, Z15 of specimen group without binder treatment was measured $46.79({\pm}3.17)^{\circ}$, $57.47({\pm}4.83)^{\circ}$, $56.19({\pm}2.66)^{\circ}$, respectively. but, L04, L12, L15 of specimen group without binder treatment was measured $63.84({\pm}2.20)^{\circ}$, $66.08({\pm}0.16)^{\circ}$, $65.10({\pm}1.01)^{\circ}$, respectively. Average contact angle of L15 was measured $65.10({\pm}1.01)^{\circ}$. In X-ray Dot Mapping results, thickness of binder including Al element was measured that each of L04, L12, L15 were $20{\mu}m$, $15{\mu}m$, $10{\mu}m$. Conclusion: The more rough surface increases the wettability, but the sintered exclusive binder decreases the wettability.