DOI QR코드

DOI QR Code

A histomorphometric study on the effect of surface treatment on the osseointegration

티타늄 임플란트의 표면처리가 골유착에 미치는 영향에 관한 조직형태계측학적 연구

  • Choi, Woong-Jae (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 최웅재 (단국대학교 치과대학 치과보철학교실) ;
  • 조인호 (단국대학교 치과대학 치과보철학교실)
  • Published : 2009.10.30

Abstract

Statement of problem: Many studies have been conducted to improve the primary stability of implants by providing bioactive surfaces via surface treatments. Increase of surface roughness may increase osteoblast activity and promote stronger bonding between bone and implant surface and it has been reported that bioactive surface or titanium can be obtained through alkali and heat treatment. Purpose: The purpose of this study was to evaluate the stability of alkali and heat treated implants via histomorphometric analysis. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface, the other groups were treated for 24 hours in 5 M NaOH solution and heat treated for 1 hour at $600^{\circ}C$ in the atmosphere (group 2) and vacuum (group 3) conditions respectively. Surface characteristics were analyzed and fixtures were implanted into rabbits. The specimens were histologically and histomorphometrically compared according to healing periods and change in bone composition were analyzed with EPMA (Electron Probe Micro Analyzer). Results: 1. Groups treated with alkali and heat showed increase of oxidization layer and Na ions. Groups 2 which was heat treated in atmosphere showed significant increase of surface roughness (P<.05). 2. Histomorphometric analysis showed significant increase in BIC (bone to implant contact) according to increase in healing period and there was significant increases in groups 2 and 3 (P<.05). 3. BA(bone area) ratio showed similar results as contact ratio, but according to statistical analysis there was significant increase according to increase in healing period in group 2 only (P<.05). 4. EPMA analysis revealed no difference in gradation of bone composition of K, P, Ca, Ti in surrounding bone of implants according to healing periods but groups 2 and 3 showed increase of Ca and P in the initial stages. Conclusion: From the results above, it can be considered that alkali and heat treated implants in the atmosphere have advantages in osseointegration in early stages and may decrease the time interval between implantation and functional adaptation.

연구목적: 임플란트를 이용한 수복의 임상적인 성공에 중요한 역할을 하는 초기 골유착의 향상을 위해 티타늄의 표면 거칠기 조절과 함께 생체활성도를 가진 표면으로 변화시키는 방법에 관한 연구가 이루어지고 있다. 표면 거칠기의 적절한 증가는 조골세포의 활동을 증가시키고 골과 임플란트의 접촉과 유지를 촉진시킨다고 보고되고 있고 또한 알칼리와 열처리를 통하여 생체 활성 표면을 얻을 수 있는 것으로 보고되고 있다. 이에 본 연구에서는 알칼리 및 열을 이용한 티타늄 표면 처리가 골유착에 어떤 영향을 미치는지 알아보고자 하였다. 연구재료 및 방법: 기계절삭된 임플란트를 대조군으로 하여 (1군), 5 M NaOH 용액에 처리한 임플란트를 대기 중에서 열처리한 군 (2군)과 진공에서 열처리한 군 (3군)으로 분류하였다. 알칼리와 열처리를 시행한 임플란트들의 표면 특성을 관찰하고 가토에 식립하여 치유 기간에 따라서 조직학적 및 조직형태계측학적으로 비교하고 EPMA (Electron Probe Micro Analyzer)를 이용하여 치유 기간 별 골성분의 변화를 분석하였다. 결과 및 결론: 대기 중에서 열처리한 2군이 통계적으로 유의하게 (P<.05) 증가된 표면 거칠기를 보였다. 이렇게 만들어진 임플란트를 가토에 식립하여 조직 형태계측학적 분석을 시행한 결과 골-임플란트 접촉율은 전반적으로 치유기간이 경과하면서 증가하는 것으로 나타났으며 2군과 3군에서 통계적 분석결과 치유기간 간에 유의한 차이가 관찰되었고 (P<.05), 골-임플란트 면적율 (BA) 또한 골 임플란트 접촉율과 비슷한 양상을 보였으며 통계적 분석결과 2군에서만 치유기간별로 통계적으로 유의한 차이가 관찰되었다 (P<.05). 치유 기간별로 임플란트 주변 골에서 칼륨 (K), 인 (P), 칼슘 (Ca), 티타늄 (Ti)의 분포를 EPMA로 보았을 때 빈도의 편향은 관찰되지 않았으며 2군과 3군에서 초기에 칼슘과 인이 증가되는 것이 관찰되었다. 이상의 결과로 볼 때 알칼리 및 대기 중에서 열처리로 표면 처리된 임플란트의 사용은 초기에 안정된 골유착에 도움을 주며 임플란트 식립 후 기능까지의 시간을 감소시킬 것으로 사료된다.

Keywords

References

  1. Br$\aa$nemark P, Zarb G, Albrektsson T. Tissue integrated prostheses : Osseointegration in clinical dentistry. Chicago: Quintessence Publishing Co. 1985; p221-9
  2. Albrektsson T, Bra$\aa$nemark PI, Hansson HA, Lindstr$\H{o}$m J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70 https://doi.org/10.3109/17453678108991776
  3. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 https://doi.org/10.1002/jbm.820250708
  4. Choi JW, Kim KN, Heo SJ, Chang IT, Han JH, Baik HK, Choi YC, Wennerberg A. The effects of various surface treatment methods on the osseointegration. J Korean Acad Prosthodont 2001;39:71-83
  5. Kang BS, Cho IH. A histomorphometric and stability of two kinds of implants with different surface roughness. J Korean Acad Oral Maxillofac Implants 2001;5:42-69
  6. Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 1994;15:1062-74 https://doi.org/10.1016/0142-9612(94)90092-2
  7. Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 2000;15:331-44
  8. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29:1567-75 https://doi.org/10.1002/jbm.820291213
  9. Kasemo B, Lausmaa J. Biomaterial and implant surfaces: a surface science approach. Int J Oral Maxillofac Implants 1988;3:247-59
  10. Wennerberg A, Albrektsson T, Lausmaa J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3. J Biomed Mater Res 1996;30:251-60 https://doi.org/10.1002/(SICI)1097-4636(199602)30:2<251::AID-JBM16>3.0.CO;2-P
  11. Park KH, Chang IT. Osseointegration of anodized titanium implants. J Korean Acad Prosthodont 2004;42:267-77
  12. Eliades T. Passive film growth on titanium alloys: physicochemical and biologic considerations. Int J Oral Maxillofac Implants 1997;12:621-7
  13. Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 1996;41:1143-53 https://doi.org/10.1016/0013-4686(95)00465-3
  14. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 1993;43:245-53
  15. Brauner H. Corrosion resistance and biocompatibility of physical vapour deposition coatings for dental applications. Surf Coat Technol 1993;62:618-25 https://doi.org/10.1016/0257-8972(93)90308-B
  16. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med 1996;7:329-45 https://doi.org/10.1177/10454411960070040301
  17. Peutzfeldt A, Asmussen E. Distortion of alloy by sandblasting. Am J Dent 1996;9:65-6
  18. Pouilleau J, Devilliers D, Garrido F, Durand-Vidal S, Mahe E. Structure and composition of passive titanium oxide film. Mater Sci Eng 1997;47:235-43 https://doi.org/10.1016/S0921-5107(97)00043-3
  19. Sul YT, Byon ES, Jeong Y. Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant. Clin Implant Dent Relat Res 2004;6:101-10 https://doi.org/10.1111/j.1708-8208.2004.tb00032.x
  20. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-28
  21. Sul YT, Johansson CB, Jeong Y, R$\"{o}$ser K, Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response. J Mater Sci Mater Med 2001;12:1025-31 https://doi.org/10.1023/A:1012837905910
  22. Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants 2005;20:349-59
  23. Babbush CA, Kent JN, Misiek DJ. Titanium plasmasprayed (TPS) screw implants for the reconstruction of the edentulous mandible. J Oral Maxillofac Surg 1986;44:274-82 https://doi.org/10.1016/0278-2391(86)90078-9
  24. Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hj$\/{o}$rting-Hansen E. Anchorage of $TiO_2$-blasted, HA-coat ed, and machined implants: an experimental study with rabbits. J Biomed Mater Res 1995;29:1223-31 https://doi.org/10.1002/jbm.820291009
  25. Sanz A, Oyarz$\'{u}$n A, Farias D, Diaz I. Experimental study of bone response to a new surface treatment of endosseous titanium implants. Implant Dent 2001;10:126-31 https://doi.org/10.1097/00008505-200104000-00009
  26. Marinho VC, Celletti R, Bracchetti G, Petrone G, Minkin C, Piattelli A. Sandblasted and acid-etched dental implants: a histologic study in rats. Int J Oral Maxillofac Implants 2003;18:75-81
  27. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:1071-9 https://doi.org/10.1002/jbm.820290907
  28. Lee JM, Kim YS, Kim CW, Jang KS, Lim YJ. A study on the responses of osteoblasts to various surface-treated titanium. J Korean Acad Prosthodont 2004;42:307-19
  29. Darvell BW, Samman N, Luk WK, Clark RK, Tideman H. Contamination of titanium castings by aluminium oxide blasting. J Dent 1995;23:319-22 https://doi.org/10.1016/0300-5712(94)00003-X
  30. Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med 1997;8:341-7 https://doi.org/10.1023/A:1018524731409
  31. Kim HW, Kim HE, Salih V, Knowles JC. Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. J Biomed Mater Res A 2005;74:294-305 https://doi.org/10.1002/jbm.a.30191
  32. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J Mater Sci Mater Med 2004;15:99-107 https://doi.org/10.1023/B:JMSM.0000011809.36275.0c
  33. Kokubo T, Miyaji F, Kim HM, Nakamura T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 1996;79:1127-9 https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  34. Wang CX, Wang M, Zhou X. Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials 2003;24:3069-77 https://doi.org/10.1016/S0142-9612(03)00154-6
  35. Song YS, Cho IH. Surface characteristics and stability of implants treated with alkali and heat. J Korean Acad Prosthodont 2008;46:490-9 https://doi.org/10.4047/jkap.2008.46.5.490
  36. Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The S¨age-Schliff (sawing and grinding) technique. J Oral Pathol 1982;11:318-26 https://doi.org/10.1111/j.1600-0714.1982.tb00172.x
  37. Johansson CB, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 1991;2:24-9 https://doi.org/10.1034/j.1600-0501.1991.020103.x
  38. Lim JB, Cho IH. A study on the surface characteristics and stability of implants treated with anodic oxidation and fluorideincorporation. J Korean Acad Stomatognathic Func Occl 2006;22:349-64
  39. Hench L. Bioceramics: From concept to clinic. J Am Ceram Soc 1991;74:1487-510 https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  40. Chosa N, Taira M, Saitoh S, Sato N, Araki Y. Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res 2004;83:465-9 https://doi.org/10.1177/154405910408300606
  41. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. The effect of heat treatment on bonebonding ability of alkali-treated titanium. Biomaterials 1999;20:491-500 https://doi.org/10.1016/S0142-9612(98)90203-4
  42. Jon$\'{a}$sov$\'{a}$ L, M$\"{u}$ller FA, Helebrant A, Strnad J, Greil P. Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials 2002;23:3095-101 https://doi.org/10.1016/S0142-9612(02)00043-1
  43. Maitz MF, Poon RW, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 2005; 26:5465-73 https://doi.org/10.1016/j.biomaterials.2005.02.006
  44. Sennerby L, Thomsen P, Ericson L. Early tissue response to titanium implants inserted in rabbit cortical bone, Part 1: Light microscopic observations. J Mater in Med 1993; 4:240-50 https://doi.org/10.1007/BF00122275
  45. Sennerby L, Thomsen P, Ericson L. Early tissue response to titanium implants inserted in rabbit cortical bone, Part 2: Ultrastuctural observations. J Mater in Med 1993;4:494-502 https://doi.org/10.1007/BF00120129
  46. Tzaphlidou M, Speller R, Royle G, J Griffiths. High resolution Ca/P maps of bone architecture. Research Highlights 2002-2003;76-9
  47. Tzaphlidou M, Speller R, Royle G, Griffiths J. Preliminary estimates of the calcium/phosphorus ratio at different cortical bone sites using synchrotron microCT. Phys Med Biol 2006;51:1849-55 https://doi.org/10.1088/0031-9155/51/7/015
  48. Tzaphlidou M, Zaichick V. Sex and age related Ca/P ratio in cortical bone of iliac crest of healthy humans. J Radioanal Nucl Chem 2004;259:347-49 https://doi.org/10.1023/B:JRNC.0000017316.20693.45