DOI QR코드

DOI QR Code

Microstructures and Thermal Properties of Water Quenched Thermoelectric Material in Bi2Te3-PbTe System

급속 응고 된 Bi2Te3-PbTe계 열전소재의 미세구조와 열전 특성

  • Yim, Ju-Hyuk (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Jung, Kyoo-Ho (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • You, Hyun-Woo (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Kim, Kwang-Chon (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Kim, Jin-Sang (Department of Electronic Materials Center Materials Research Center, Korea Institute of Science and Technology(KIST))
  • 임주혁 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 정규호 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 유현우 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 김광천 (한국과학기술연구원 재료연구본부 전자재료센터) ;
  • 김진상 (한국과학기술연구원 재료연구본부 전자재료센터)
  • Received : 2010.02.08
  • Accepted : 2010.05.20
  • Published : 2010.06.01

Abstract

In order to design nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system are investigated for their micro structure properties. For this synthesis, the liquid alloys are cooled by the water quenching method. Micro structure images are obtained by using an electron probe micro analyzer(EPMA). Dendritic and lamellar structures are clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. The increase in the $Bi_2Te_3$ composition ratio causes to change of the structure from dendritic to lamellar. The Seebeck coefficient of sample 5, in which the mixture rate of $Bi_2Te_3$ is 83%, is measured as the highest value. In contrast, the others decrease with the increase of the $Bi_2Te_3$ composition ratio. Meanwhile, p-type characteristics are observed in sample 6, at 91%-$Bi_2Te_3$ mixture rate. The power factors of the all samples are calculated with the Seebeck coefficient and resistivity.

Keywords

References

  1. T. J. Seebeck, Abhandlugen der Deutschen Akademie der Akademie der Wissenschaften zu (Berlin, 1822) p. 265.
  2. R. R. Heikes and R. W. Ure, Jr., Thermoelectricity:Science and Engineering (Interscience Pub., London 1961).
  3. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).
  4. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105(2008). https://doi.org/10.1038/nmat2090
  5. J. C. Caylor, K. Coonley, J. Stuart, T. Colpitts, and R. Venkatasubramanian, Appl. Phys. Lett. 87, 023105 (2005). https://doi.org/10.1063/1.1992662
  6. R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000). https://doi.org/10.1103/PhysRevB.61.3091
  7. J.-H. Kim, D.-Y. Jeong, B.-K. Ju, and J.-S. Kim, J. Appl. Phys. 100, 123501 (2006). https://doi.org/10.1063/1.2399305
  8. N. S. Golovanova, V. P. Zlomanov, and O. I. Tananaeva, Izv. Akad. Nauk SSSR, Neorg. Mater. 19, 740 (1983).
  9. R. Chami, G. Brun, J.-C. Tedenac, and M. Maurin, Rev. Chim. Miner. 20, 305 (1983).
  10. T. Hirai, Y. Takeda, and K. Kurata, J. Less-Common Met. 13, 352 (1967). https://doi.org/10.1016/0022-5088(67)90143-9