DOI QR코드

DOI QR Code

Effect of Specimen Area on the Corrosion Rate of Low Alloy Steel

저합금강의 부식속도에 미치는 시편 면적의 영향

  • Kim, Min-Jun (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Jang, Young-Wook (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Yoo, Yun-Ha (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Jong-Jip (Korea Research Institute of Standards and Science) ;
  • Kim, Jung-Gu (Department of Advanced Materials Engineering, Sungkyunkwan University)
  • 김민준 (성균관대학교 신소재공학부) ;
  • 장영욱 (성균관대학교 신소재공학부) ;
  • 유윤하 (성균관대학교 신소재공학부) ;
  • 김종집 (한국표준과학연구원) ;
  • 김정구 (성균관대학교 신소재공학부)
  • Received : 2010.02.01
  • Accepted : 2010.04.08
  • Published : 2010.05.31

Abstract

Effects of specimen area on the corrosion rate of low alloy steel were studied in sulfuric acid solution. The corrosion behavior of specimen was tested by electrochemical impedance spectroscopy (EIS), linear polarization resistance measurement (LPR) and potentiodynamic polarization measurement. The surface was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electron probe X-ray micro analyzer (EPMA). As surface area was increased, corrosion rate was increased by the effect of small anode-large cathode.

본 연구에서는 균일부식이 발생하는 저합금강의 노출면적에 따른 부식속도의 변화를 관찰하고 이에 대한 원인을 규명하고자 하였다. 다양한 표면적을 지닌 동일한 저합금강 시편의 부식속도를 전기 화학적 임피던스 분광법, 직선분극저항 측정법, 동전위 분극 시험법을 이용하여 산출하였다. 또한 전자주사현미경, X선 광전자 분광법 및 X선 전자탐침 미량분석을 이용하여 표면분석을 실시하였다. 전기화학적 시험 결과 모든 시험법에서 시편의 크기가 증가할수록 부식속도가 높게 산출되었으며, 표면분석을 통해 망간과 황으로 구성된 화합물이 존재하는 영역에서 우선적으로 부식이 발생하며, 이 화합물과 철 또는 구리 산화물이 소양극-대음극의 미세 갈바닉 셀을 구성함을 확인하였다. 이러한 효과는 시편 크기에 비례하여 증가하였으며, 국부적인 부식이 우선적으로 발생한 후, 부식생성물이 표면을 덮게 되어 점차 균일부식의 형태로 전환하게 된다.

Keywords

References

  1. J. R. Scully and R. G. Kelly, “Methods for Determining Aqueous Corrosion Reaction Rates” in ASM Handbook, Vol. 13A, 68, ASM International, OH (2003).
  2. Z. Szklarska-Smialowaska, “Pitting Corrosion of Metals” NACE, Houston, Texas (1986).
  3. A. Broli, H. Holtan, and M. Midjo, ‘Use of potentiokinetic and potentiostatic methods for the determination of characteristic potentials for pitting corrosion of an Fe-Cr alloy’ Brit. Corrosion J., 8, 173 (1973). https://doi.org/10.1179/000705973798322189
  4. A. Broli and H. Holtan, ‘Use of potentiokinetic and potentiostatic methods for the determination of characteristic potentials for pitting corrosion of Aluminum in a deaerated solution of 3 % NaCl’ Corros. Sci., 13, 237 (1973). https://doi.org/10.1016/0010-938X(73)90002-4
  5. P. E. Manning, D. J. Duquette, and W. F. Savage, ‘Effect of test method and surface condition on pitting potential of single and duplex phase 304L stainless steel’ Corrosion, 35, 151 (1979). https://doi.org/10.5006/0010-9312-35.4.151
  6. P. C. Pistorious and G. T. Burstein, ‘Metastable pitting corrosion of stainless steel and the transition to stability’ Phil. Trans. Roy. Soc. Lond., A 341, 531 (1992). https://doi.org/10.1098/rsta.1992.0114
  7. P. C. Pistorious and G. T. Burstein, ‘Growth of corrosion pits on stainless steel in chloride solution containing dilute sulfate’ Corros. Sci., 33, 1885 (1992). https://doi.org/10.1016/0010-938X(92)90191-5
  8. H. Bohni, T. Suter, and A. Schreyer, ‘Micro- and nanotechniques to study localized corrosion’ Electrochim. Acta, 40, 1361 (1995). https://doi.org/10.1016/0013-4686(95)00072-M
  9. G. T. Burstein and G. O. Ilevbare, ‘The effect of specimen size on the measured pitting potential of stainless steel’ Corros. Sci., 38, 2257 (1996). https://doi.org/10.1016/S0010-938X(97)83146-0
  10. A. M. Al-Mayouf, N. A. Al-Mobarak, and A. A. Al-Swayih, ‘Dissolution of Magnetite coupled with Iron of various surface areas’ Corrosion, 63, 916 (2007). https://doi.org/10.5006/1.3278309
  11. L. Li and A. A Sagues, ‘Chloride corrosion threshold of reinforcing steel in alkaline solutions’ Corrosion, 60, 195 (2004). https://doi.org/10.5006/1.3287721
  12. D. A. Jones, “Principles and Prevention of Corrosion” 2nd ed., 200, Prentice-Hall, NJ (1996).
  13. M. Stern and A.L Geary, ‘Electrochemical polarization’ J. Electrochem. Soc., 104, 56 (1957). https://doi.org/10.1149/1.2428496
  14. D. A. Jones, “Principles and Prevention of Corrosion” 2nd ed., 94, Prentice-Hall, NJ (1996).
  15. S. W. Dean, “Handbook on Corrosion Testing and Evaluation” 171, John Wiley, NY (1971).
  16. J. R. Scully, D. C. Silverman, and M. W. Kenkig, “Electrochemical Impedance-Analysis and Interpretation” 54, ASTM, PA (1993).
  17. P. R. Roberge, E. Halliop, and M. Asplund, 'Electrochemical Impedance Spectroscopy as a valuable monitoring technique for various forms of corrosion' J. Appl. Electrochem., 20, 1004 (1990). https://doi.org/10.1007/BF01019580
  18. P. R. Roberge, E. Halliop, and V.S. Sastri, 'Corrosion of mild steel using Electrochemical Impedance Spectroscopy data analysis' Corrosion, 48, 447 (1992) https://doi.org/10.5006/1.3315959
  19. D. A. Jones, “Principles and Prevention of Corrosion” 2nd ed., 119, Prentice-Hall, NJ (1996).
  20. D. A. Jones, “Principles and Prevention of Corrosion” 2nd ed., 85, Prentice-Hall, NJ (1996).
  21. ASTM G1. “Standard practice for preparing, cleaning, and evaluating corrosion test specimens”.
  22. Z. Szlarska-Smialowska, ‘Influence of sulfide inclusions on the pitting corrosion of steels’ Corrosion, 28, 388 (1972). https://doi.org/10.5006/0010-9312-28.10.388
  23. E. E. Stansbury and R. A. Buchanan, “Fundamentals of Electrochemical Corrosion” 315, ASM International, OH (2000).

Cited by

  1. Influence of surface roughness on the electrochemical behavior of carbon steel vol.43, pp.5, 2013, https://doi.org/10.1007/s10800-013-0534-5
  2. Effect of surface area on corrosion properties of magnesium for biomaterials vol.19, pp.5, 2013, https://doi.org/10.1007/s12540-013-5032-0
  3. Corrosivity evaluation of SWRO membrane desalted permeate vol.18, pp.1, 2014, https://doi.org/10.1007/s12205-014-0161-7