• Title/Summary/Keyword: Electrodeposition characteristics

Search Result 81, Processing Time 0.03 seconds

A Study on the Preparation and Characteristics of Electrodeposited Lead Dioxide Electrodes (전착 이산화납전극의 제조 및 특성에 관한 연구)

  • Kim, Jae Kwan;Lee, Chung Young;Nam, Chong Woo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.273-283
    • /
    • 1993
  • Addition of various acids or organic compounds to the electrolyte solution during the electrodeposition of $PbO_2$ on titanium madras substrate strongly affected performance of the deposited $PbO_2$ layer. Results of X-ray diffractometry ascertained that ${\beta}-PbO_2$ was deposited in acidic electrolyte. Among additives used in this experiment, $PbO_2$ with a high oxygen overvoltage was electrodeposited when sodium lauryl sulfate was added, and $PbO_2$ with a lower chlorine overvoltage was electrodeposited when polyethylene glycol was added to the electrolyte solution. The oxygen and chlorine overvoltage of $PbO_2$ was strongly dependent on the stirring provided during the electrodeposition experiment. It was observed by the SEM results that the $PbO_2$ grains deposited when stirring was not provided during the electrodeposition have larger than $PbO_2$ grains deposited by stirring. In the $PbO_2$ deposition under acidic electrolyte, the oxygen overvoltage increased with larger $PbO_2$ grains and the chlorine overvoltage decreased with smaller $PbO_2$ grains. The optimal current efficiency of $PbO_2$ in the presence of perchloric acid was observed at $Pb(NO_3)_2$ 560g/l, $65{\sim}70^{\circ}C$, and pH>1.

  • PDF

Contact Resistance of the Flip-Chip Joints Processed with Cu Mushroom Bumps (Cu 머쉬룸 범프를 적용한 플립칩 접속부의 접속저항)

  • Park, Sun-Hee;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • Cu mushroom bumps were formed by electrodeposition and flip-chip bonded to Sn substrate pads. Contact resistances of the Cu-mushroom-bump joints were measured and compared with those of the Sn-planar-bump joints. The Cu-mushroom-bump joints, processed at bonding stresses ranging from 19.1 to 95.2 MPa, exhibited contact resistances near $15m\Omega$/bump. Superior contact-resistance characteristics to those of the Sn-planar-bump joints were obtained with the Cu-mushroom-bump joints. Contact resistance of the Cu-mushroom-bump joints was not dependent upon the thickness of the as-elecroplated Sn-capcoating layer ranging from $1{\mu}m$ to $4{\mu}m$. When the Sn-cap-coating layer was reflowed, however, the contact resistance was greatly affected by the thickness and the reflow time of the Sn-cap-coating layer.

  • PDF

Characteristics and Preparation of Manganese Oxide Electrode by Using Pulse Voltammetry Electrodeposition for Electrolysis (펄스 전착법을 이용한 전기분해용 망간 산화물 전극의 제조 및 특성)

  • Yang, Jeong-Jin;Lee, Mi-Young;Kim, Jeong-Sik;Shin, Hyun-Soo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • In order to investigate the electrochemical propertied of titanium electrode for electrolysis, manganese oxide was electrodeposited on surface of mesh titanium by pulse voltammetry. The morphological changes and impedance results of manganese oxide electrodeposited electrode were analyzed by SEM and EDX. The size of electrodeposited manganese oxide on mesh titanium was increased with first cycle pulse time increase, and approximately 100 non-uniform manganese oxide was grown at 10 ms pulse polarization time. Charge transfer resistance($R_{ct}$) of near the overpotential was analyzed by EIS measurement and the feasibility of prepared electrode was evaluated by the overpotential calculated from Tafel plots.

The Effects of Levelers on Electrodeposition of Copper in TSV Filling (TSV 필링 공정에서 평활제가 구리 비아필링에 미치는 영향 연구)

  • Jung, Myung-Won;Kim, Ki-Tae;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.55-59
    • /
    • 2012
  • Defects such as voids or seams are frequently found in TSV via filling process. To achieve defect-free copper via filling, organic additives such as suppressor, accelerator and leveler were necessary in a copper plating bath. However, by-products stemming from the breakdown of these organic additives reduce the lifetime of the devices and plating solutions. In this research, the effects of levelers on copper electrodeposition were investigated without suppressor and accelerator to lower the concentration of additives. Threelevelers(janus green B, methylene violet, diazine black) were investigated to study the effects of levelers on copper deposition. Electrochemical behaviors of these levelers were different in terms of deposition rate. Filling performances were analyzed by cross sectional images and its characteristics were different with variations of levelers.

Influence of Incorporated Impurities on the Evolution of Microstructure in Electro-Deposited Copper Layer (혼입불순물이 구리 도금층의 미세조직변화에 미치는 영향)

  • Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • The self-annealing which leads evolution of microstructure in copper electroplating layers at room temperature occurs after forming deposition layer. During the process, crystal orientation, size and sheet resistance of plating layer change. Lastly, it causes the change of physical and mechanical characteristics such as a tensile strength of plating layer. In this study, the variation of incorporated impurities, microstructure and sheet resistance of copper plating layer formed by electroplating are measured with and without inorganic additives during the self-annealing. In case of absence of inorganic additives, the copper layer presents strong total intensity of incorporated impurities. During the self-annealing, such width of reduction was significant. Moreover, microstructure and crystal size are increased while the tensile strength is decreased noticeably. On the other hand, in the presence of inorganic additives, there is no observable distinction in the copper plating layer. According to the observation on movements of the incorporated impurities in electrodeposition copper layer, within 12 hours the impurities are continuously shifted from inside of the plating layer to its surface after as-deposited electroplating. Within 24 hours, except for the small portion of surface layer, it is considered that most of the microstructure is transformed.

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

  • Yamaguchi, Masaki;Yamamuro, Hiroki;Takashiri, Masayuki
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1513-1522
    • /
    • 2018
  • Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.

The Effect of Various Electrolyte Concentrations on Surface and Electrical Characteristic of the Copper Deposition Layer at Anodizing of Titanium Anode (티타늄 음극기지의 양극산화 전해질 농도에 따른 구리전착층 표면 및 전기적 특성에 미치는 효과)

  • Lee, Man-Hyung;Park, Eun-Kwang;Woo, Tae-Gyu;Park, Il-Song;Yoon, Young-Min;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.747-754
    • /
    • 2008
  • Recently, the requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. Therefore, it is important to examine the surface state of substrate depending on the processing parameter during the anodic oxidation. This study investigated the effect of the various electrolyte concentrations on anodizing of titanium anode prior to copper electrodeposition. Different surface morphology of anodized titanium was obtained at different electrolytic concentration 0.5 M to 3.0 M. In addition, the effect that the surfaces and the electrical characteristics on the electrodeposited copper layer was observed. In this study, surface anodized in the group containing 0.5M $H_2SO_4$ shows more uniform copper crystals with low surface roughness. the surface roughness and sheet resistance for 0.5M $H_2SO_4$ group were $1.353{\mu}m$ and $0.104m{\Omega}/sq$, respectively.

Preparation of nickel Plating solution and the characteristics of deposition with complexents (무전해 니켈 도금액 제조와 복합제에 따른 도금 특성)

  • Jung, Seung-Jun;Park, Jong-Eun;Son, Won-Keun;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.909-911
    • /
    • 1999
  • Metalization technology of the fine patterns by electroless plating is required in place of electrodeposition as high-density printed circuit boards (PCB) become indispensable with the miniaturization of electronic components. Electroless nickel plating is a suitable diffusion barrier between conductor metals, such as Al and Cu, and solder is essetional in electronic packaging in order to sustain a long period of service. Moreover, Electroless nickel has particular characteristics including non-magnetic property, amorphous structure, wear resistance, corrosion protection and thermal stability. In this study fundamental aspects of electroless nickel deposition were studied with effect of complexeing agents of different kinds. Then, the property of electroless deposit are controlled by the composition of the deposition solution, the deposition condition such as temperature and pH value and so on. the characteristics of the deposits has been carried out.

  • PDF

The Micro Coil Production through Research on the Additive Conditions of Electrochemical Metal 3D Printer (전기화학적 금속 3D 프린터의 적층 조건 연구를 통한 마이크로 코일 제작)

  • Kim, Young-Kuk;Kang, Donghwa;Kim, Sung-Bin;Yoo, Bongyoung
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.4
    • /
    • pp.138-143
    • /
    • 2020
  • In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research contents for manufacturing a micro pattern coil having practicality through control of process control variables such as applied voltage, distance between electrode, and nozzle injection. Circulation of the electrolyte through the nozzle injection control can significantly contribute to improving the surface characteristics of the coil because of minimizing voltage fluctuations that may occur during the additive manufacturing process. In addition, by applying the pulse method in the application of voltage, the lamination characteristics of the plated body were improved, which showed that the formation of a fine line width plays an important role in the production of a micro pattern coil. By applying the pulse signal to the voltage application, the additive manufacturing characteristics of the produced product were improved, and it was shown that the formation of a fine line width plays an important role in the production of a micro pattern coil.

Electrodeposition behaviors of zinc from neutral chloride baths at high current density (중성염화물욕에서 아연의 고전류밀도 전착특성)

  • 김영근
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.219-228
    • /
    • 1996
  • Neutral Zinc Electroplating(NZE) utilizing the electrolyte of pH 6 to 8 has advantages in waste treatment and the protection of equipment. NZE is beneficially used in chromating treatment, but the limiting current density and the current efficiency are low. Therefore this study is investigated to analyse the characteristics of NZE and to obtain high current density and current efficiency. The deposition potential of zinc in the NZE bath is about 110mV, which is lower than acidic bath. The current density possibily increases up to 60A/d$\m^2$ in lower complexing agent content and pH 6. More than 90% of cathodic current efficiency was obtained in NZE bath. The NZE morphology shows smaller grains than acidic bath. The addition of 4$m\ell$/1 second brightener gives finer morphology. As pH becomes higher, (002) plan decreases and (100), (101) and (110) planes increase in the no additives solution.

  • PDF