DOI QR코드

DOI QR Code

The Micro Coil Production through Research on the Additive Conditions of Electrochemical Metal 3D Printer

전기화학적 금속 3D 프린터의 적층 조건 연구를 통한 마이크로 코일 제작

  • Received : 2020.06.05
  • Accepted : 2020.07.13
  • Published : 2020.08.31

Abstract

In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research contents for manufacturing a micro pattern coil having practicality through control of process control variables such as applied voltage, distance between electrode, and nozzle injection. Circulation of the electrolyte through the nozzle injection control can significantly contribute to improving the surface characteristics of the coil because of minimizing voltage fluctuations that may occur during the additive manufacturing process. In addition, by applying the pulse method in the application of voltage, the lamination characteristics of the plated body were improved, which showed that the formation of a fine line width plays an important role in the production of a micro pattern coil. By applying the pulse signal to the voltage application, the additive manufacturing characteristics of the produced product were improved, and it was shown that the formation of a fine line width plays an important role in the production of a micro pattern coil.

Keywords

References

  1. H. Kodama, Automatic method for fabricating a three‐dimensional plastic model with photohardening polymer, Rev. Sci. Instrum. 52 (1981) 1770-1773. https://doi.org/10.1063/1.1136492
  2. Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. Additive manufacturing and its societal impact: a literature review, Int. J. Adv. Manuf. Technol. 67 (2013) 1191-1203. https://doi.org/10.1007/s00170-012-4558-5
  3. Conner, B. P., Manogharan, G. P., Martof, A. N., Rodomsky, L. M., Rodomsky, C. M., Jordan, D. C., & Limperos, J. W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services, Addit. Manuf. 1 (2014) 64-76.
  4. Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. 3D printing of polymer matrix composites: A review and prospective, Compos. B. 110 (2017) 442-458. https://doi.org/10.1016/j.compositesb.2016.11.034
  5. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B. 143 (2018) 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  6. Sing, S. L., An, J., Yeong, W. Y., & Wiria, F. E.. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 34 (2016) 369-385. https://doi.org/10.1002/jor.23075
  7. Herzog, D., Seyda, V., Wycisk, E., & Emmelmann, C. Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392. https://doi.org/10.1016/j.actamat.2016.07.019
  8. Ri-Sheng, L., Shao-ni, S., & Zi-sheng, L.. The influence of scanning methods on the cracking failure of thin-wall metal parts fabricated by laser direct deposition shaping, Eng. Fail. Anal. 59 (2016) 269-278. https://doi.org/10.1016/j.engfailanal.2015.10.011
  9. Hällgren, S., Pejryd, L., & Ekengren, J.. Additive Manufacturing and High Speed Machining-Cost comparison of short lead time manufacturing methods, Procedia CIRP. 50 (2016) 384-389. https://doi.org/10.1016/j.procir.2016.05.049
  10. Niendorf, T., Leuders, S., Riemer, A., Richard, H. A., Troster, T., & Schwarze, D.. Highly anisotropic steel processed by selective laser melting, Metall. Mater. Trans. 44 (2013) 794-796. https://doi.org/10.1007/s11663-013-9875-z
  11. Morsali, S., Daryadel, S., Zhou, Z., Behroozfar, A., Qian, D., & Minary-Jolandan, M.. Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity, J. Appl. Phys. 121 (2017) 024903. https://doi.org/10.1063/1.4973622
  12. Jiang, J., Wang, X., Li, W., Liu, J., Liu, Y., & Zheng, G.. Electrohydrodynamic direct-writing micropatterns with assisted airflow, Micromachines 9 (2018) 456. https://doi.org/10.3390/mi9090456
  13. Seol, S. K., Kim, D., Lee, S., Kim, J. H., Chang, W. S., & Kim, J. T.. Electrodepositionbased 3D printing of metallic microarchitectures with controlled internal structures, Small, 11 (2015) 3896-3902. https://doi.org/10.1002/smll.201500177
  14. Rajput, M. S., Pandey, P. M., & Jha, S.. Fabrication of nano-sized grain micro features using ultrasonic-assisted jet electrodeposition with pulsed current supply, Proc. Inst. Mech. Eng. B. 228 (2014) 1338-1349. https://doi.org/10.1177/0954405413520142
  15. Motojima, S., Hoshiya, S., & Hishikawa, Y.. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands, Carbon, 41 (2003) 2653-2689. https://doi.org/10.1016/S0008-6223(03)00287-2
  16. Williams, K. L., Jonsson, K., Köhler, J., & Boman, M.. Electrothermal characterization of tungsten-coated carbon microcoils for micropropulsion systems, Carbon, 45 (2007) 484-492. https://doi.org/10.1016/j.carbon.2006.11.001
  17. Amato, M., Dalena, F., Coviello, C., De Vittorio, M., & Petroni, S.. Modeling, fabrication and characterization of micro-coils as magnetic inductors for wireless power transfer, Microelectron. Eng., 111 (2013) 143-148. https://doi.org/10.1016/j.mee.2013.03.038
  18. Kang, G. H., & Kim, S. H. Electromagnetic wave shielding effectiveness based on carbon microcoil-polyurethane composites, J. Nanomater. 2014.
  19. Chen, X., Yang, S., Hasegawa, M., Kawabe, K., & Motojima, S.. Tactile microsensor elements prepared from arrayed superelastic carbon microcoils, Appl. Phys. Lett. 87 (2005) 054101. https://doi.org/10.1063/1.2006209
  20. Neagu, C. R., Jansen, H. V., Smith, A., Gardeniers, J. G. E., & Elwenspoek, M. C.. Characterization of a planar microcoil for implantable microsystems, Sensor. Actuat. A-Phys. 62 (1997) 599-611. https://doi.org/10.1016/S0924-4247(97)01601-4