The Effect of Various Electrolyte Concentrations on Surface and Electrical Characteristic of the Copper Deposition Layer at Anodizing of Titanium Anode

티타늄 음극기지의 양극산화 전해질 농도에 따른 구리전착층 표면 및 전기적 특성에 미치는 효과

  • Lee, Man-Hyung (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Park, Eun-Kwang (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Woo, Tae-Gyu (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Park, Il-Song (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Yoon, Young-Min (Research Center of Industrial Technology, College of Engineering, Chonbuk National University) ;
  • Seol, Kyeong-Won (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University)
  • 이만형 (전북대학교 공과대학 신소재공학부) ;
  • 박은광 (전북대학교 공과대학 신소재공학부) ;
  • 우태규 (전북대학교 공과대학 신소재공학부) ;
  • 박일송 (전북대학교 공과대학 신소재공학부) ;
  • 윤영민 (전북대학교 공과대학 공업기술연구센터) ;
  • 설경원 (전북대학교 공과대학 신소재공학부)
  • Received : 2008.06.22
  • Published : 2008.11.25

Abstract

Recently, the requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. Therefore, it is important to examine the surface state of substrate depending on the processing parameter during the anodic oxidation. This study investigated the effect of the various electrolyte concentrations on anodizing of titanium anode prior to copper electrodeposition. Different surface morphology of anodized titanium was obtained at different electrolytic concentration 0.5 M to 3.0 M. In addition, the effect that the surfaces and the electrical characteristics on the electrodeposited copper layer was observed. In this study, surface anodized in the group containing 0.5M $H_2SO_4$ shows more uniform copper crystals with low surface roughness. the surface roughness and sheet resistance for 0.5M $H_2SO_4$ group were $1.353{\mu}m$ and $0.104m{\Omega}/sq$, respectively.

Keywords

References

  1. T. X. Liang, Y. Q. Liu, Z. Q. Fu, T. Y. Luo, K. Y. Zhang, Thin Solid Films 473, 247 (2005) https://doi.org/10.1016/j.tsf.2004.07.073
  2. Y. K. Lee, T. J. O'keefe, JOM. 54, 40 (2002)
  3. M. Schlesinger, M. Paunovic, Modern Electroplating, 4th ed., Wiley New York, p. 63 (2000)
  4. T. Yamakasi, P. Schlobmacher, K. Ehrlich, Y. Ogino, Nanostruct. Mater. 10, 375 (1998) https://doi.org/10.1016/S0965-9773(98)00078-6
  5. F. Czerwinski, Nanostruct. Mater. 10, 1363 (1998) https://doi.org/10.1016/S0965-9773(99)00004-5
  6. C. Wan, J. Lei, C. Bjelkevog, S. Rudenja, N. Magtoto, J. Kelber, Thin Solid Films 72, 445 (2003)
  7. C. H. Seah, S. Mrdha, L.H. Chan, J. Mater. Process. Technol. 114, 233 (2001) https://doi.org/10.1016/S0924-0136(01)00614-8
  8. C. M. Whelan, M. R. Smyth, C. J. Barnes, J. Electroanal. Chem. 441, 109 (1998) https://doi.org/10.1016/S0022-0728(97)00415-4
  9. A. Kudelski, M. Janik-Czachor, J. Bukowska, M. Dolata, A. Szummer, J. Mol. Struct. 483, 245 (1999) https://doi.org/10.1016/S0022-2860(98)00664-4
  10. A. J. B. Dutraand, T.J.O'keefe, J. Appl. Electrochem. 29, 1217 (1999) https://doi.org/10.1023/A:1003537318303
  11. N. G. Hiroshi, USpatent, No. 4483906, 18 March (1983)
  12. A. J. Brock, L. Lin, P. Menkin, N.W. Polan, USPatent, No. 5181770, 26 January (1993)
  13. R. D. Apperson, S. J. Clouser and R. D. Patric, US Patent, No. 5403465, 4 April (1995)
  14. S. J. Clouser, D. F. Franco and C. J. Hasegawa, USPatent, No. 5421985, 6 June (1995)
  15. S. J. Clouser, R. Wiechmann, R. Schneider, U. Bohmlerand, R. D. Apperson, US patent, No. 6132887, 24 May(1996)
  16. H. Sun, J. L. Delplancke, R. Winand, T. J. O'Keefe, The Minerals, Met. & Mater. Sci. Ottawa, Vol. III, 405 (1998)
  17. J. L. Delpancke, M. Sun, T. J. O'Keefe and R. Winand, Hydrometallurgy 23, 47 (1989) https://doi.org/10.1016/0304-386X(89)90017-0
  18. J. L. Delpancke, M. Sun, T. J. O'Keefe and R. Winand, Hydrometallurgy 24, 179 (1990) https://doi.org/10.1016/0304-386X(90)90085-G
  19. C. W. Lee, Y. H. Hong, Y. H. Jang, Y. M. Hahm, Appl. Chemi. 1, 402, (1997)
  20. H. Ishizawa, M. Ogino. J. Mater. Sci. 31, 6279 (1996) https://doi.org/10.1007/BF00354450
  21. B. Sun, M. Sato, A. Harano, J.S. Clements, J. Electrostatics. 43, 115 (1998) https://doi.org/10.1016/S0304-3886(97)00166-6
  22. W. W. Son, K. H. Kim, H. I. Kim, T. Hanawa, Y. S. Jeong, Biomater. Res. 4, 66, (2000)
  23. H. L. Lee, Surface Engineering, Hyungseul publishing company (1999)
  24. H. Sun, J. L. Delplancke, R. Winand, T. J. O`Keefe, Copper 91-Cobre 91 International Conference, Vol. III, 405, (1999)
  25. H. A. Pack, Master's thesis, p.10, Inha University (2005)
  26. T. G. Woo, I. S. Park, M. H. Lee, E. K. Park, K. W. Seol, J. Kor. Inst. Met. & Mater. 45, 478 (2007)
  27. S. Yoshimura, S. Yoshihara, T. Shirakashi, E. Sato, Electrochim. Acta. 39, 589 (1994) https://doi.org/10.1016/0013-4686(94)80105-3
  28. D. N. Lee, J. Mater. Sci. Letters, 24, 4375 (1989) https://doi.org/10.1007/BF00544515