• Title/Summary/Keyword: Electric Current

Search Result 4,820, Processing Time 0.03 seconds

Characteristics of InGaAs/GaAs/AlGaAs Double Barrier Quantum Well Infrared Photodetectors

  • Park, Min-Su;Kim, Ho-Seong;Yang, Hyeon-Deok;Song, Jin-Dong;Kim, Sang-Hyeok;Yun, Ye-Seul;Choe, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.324-325
    • /
    • 2014
  • Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.

  • PDF

Dynamic Polling Algorithm Based on Line Utilization Prediction (선로 이용률 예측 기반의 동적 폴링 기법)

  • Jo, Gang-Hong;An, Seong-Jin;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.489-496
    • /
    • 2002
  • This study proposes a new polling algorithm allowing dynamic change in polling period based on line utilization prediction. Polling is the most important function in network monitoring, but excessive polling data causes rather serious congestion conditions of network when network is In congestion. Therefore, existing multiple polling algorithms decided network congestion or load of agent with previously performed polling Round Trip Time or line utilization, chanced polling period, and controlled polling traffic. But, this algorithm is to change the polling period based on the previous polling and does not reflect network conditions in the current time to be polled. A algorithm proposed in this study is to predict whether polling traffic exceeds threshold of line utilization on polling path based on the past data and to change the polling period with the prediction. In this study, utilization of each line configuring network was predicted with AR model and violation of threshold was presented in probability. In addition, suitability was evaluated by applying the proposed dynamic polling algorithm based on line utilization prediction to the actual network, reasonable level of threshold for line utilization and the violation probability of threshold were decided by experiment. Performance of this algorithm was maximized with these processes.

Active Congestion Control Using Active Router′s Feedback Mechanism (액티브 라우터의 피드백 메커니즘을 이용한 혼잡제어 기법)

  • Choe, Gi-Hyeon;Jang, Gyeong-Su;Sin, Ho-Jin;Sin, Dong-Ryeol
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.513-522
    • /
    • 2002
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization which TCP congestion window size is fluctuated during congestion occurred and if RTT (Round Trip Time) is increased, three duplicate ACK packets is not a correct congestion signal because congestion maybe already disappeared and the host may send more packets until receive the three duplicate ACK packets. Recently there is increasing interest in solving end-to-end congestion control using active network frameworks to improve the performance of TCP protocols. ACC (Active congestion control) is a variation of TCP-based congestion control with queue management In addition traffic modifications nay begin at the congested router (active router) so that ACC will respond more quickly to congestion than TCP variants. The advantage of this method is that the host uses the information provided by the active routers as well as the end points in order to relieve congestion and improve throughput. In this paper, we model enhanced ACC, provide its algorithm which control the congestion by using information in core networks and communications between active routers, and finally demonstrate enhanced performance by simulation.

Characteristics of Memory Windows of MFMIS Gate Structures (MFMIS 게이트 구조에서의 메모리 윈도우 특성)

  • Park, Jun-Woong;Kim, Ik-Soo;Shim, Sun-Il;Youm, Min-Soo;Kim, Yong-Tae;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.319-322
    • /
    • 2003
  • To match the charge induced by the insulators $CeO_2$ with the remanent polarization of ferro electric SBT thin films, areas of Pt/SBT/Pt (MFM) and those of $Pt/CeO_2/Si$ (MIS) capacitors were ind ependently designed. The area $S_M$ of MIS capacitors to the area $S_F$ of MFM capacitors were varied from 1 to 10, 15, and 20. Top electrode Pt and SBT layers were etched with for various area ratios of $S_M\;/\;S_F$. Bottom electrode Pt and $CeO_2$ layers were respectively deposited by do and rf sputtering in-situ process. SBT thin film were prepared by the metal orgnic decomposition (MOD) technique. $Pt(100nm)/SBT(350nm)/Pt(300nm)/CeO_2(40nm)/p-Si$ (MFMIS) gate structures have been fabricated with the various $S_M\;/\;S_F$ ratios using inductively coupled plasma reactive ion etching (ICP-RIE). The leakage current density of MFMIS gate structures were improved to $6.32{\times}10^{-7}\;A/cm^2$ at the applied gate voltage of 10 V. It is shown that in the memory window increase with the area ratio $S_M\;/\;S_F$ of the MFMIS structures and a larger memory window of 3 V can be obtained for a voltage sweep of ${\pm}9\;V$ for MFMIS structures with an area ratio $S_M\;/\;S_F\;=\;6$ than that of 0.9 V of MFS at the same applied voltage. The maximum memory windows of MFMIS structures were 2.28 V, 3.35 V, and 3.7 V with the are a ratios 1, 2, and 6 at the applied gate voltage of 11 V, respectively. It is concluded that ferroelectric gate capacitors of MFMIS are good candidates for nondestructive readout-nonvolatile memories.

  • PDF

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Fatigue Analysis for Electro-Mechanical Brake Caliper based on Eccentric Rotating Shaft (편심회전축 기반의 전기기계식 제동장치의 피로수명 해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2020
  • 'Electro-Mechanical Brake (EMB) is a novel braking system for automobiles and railway vehicles, and research in this area is actively underway. The current braking system for railway vehicles generates a braking force using a pneumatic cylinder, but the EMB system generates the force through a combination of an electric motor and gears. In this study, the design of an EMB system that meets the domestic standards was conducted through the finite element modeling and fatigue analysis of an eccentric rotating shaft-based EMB system capable of generating a high clamping force. At this time, to improve the accuracy of fatigue analysis, three types of fatigue test specimens, which were subjected to the same heat treatment as the materials used in the prototype, were produced, and the fatigue tests were performed for each material. The fatigue properties (S-N curves) were obtained from the fatigue test results for each material and reflected in the analysis model. The results of fatigue analysis confirmed that the design of the EMB prototype could satisfy the maximum commercial braking/relaxation of 530,000 times, which was the endurance life condition for domestic railway vehicles. In addition, based on this design, a prototype will be manufactured, and endurance testing will be completed to demonstrate the durability characteristics of the developed prototype.

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method (펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성)

  • Seo, Seok-Ju;Na, So-Jeong;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.885-893
    • /
    • 2014
  • This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.

A study on Economic Evaluation of the Theater Stage Lighting System Using LED (공연장 LED 조명시스템 구성의 경제성 평가에 관한 연구)

  • Lee, Kwong-Mo;An, Kyong-Sok;Gu, Seung-Hwan;Han, Hak-Soo;Choi, Sung-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.43-53
    • /
    • 2015
  • This study analyzes economic feasibility of the LED lighting system compare to the halogen. To evaluate economic feasibility of the LED devices, we analyzed the size of theater, current value of the lighting devices in kinds, annual cost and annual cost according to the surface in case of designing stage lighting system with LED using WEELS 2011. Also, to compare energy consumption, we analyzed consumption and amount of electric energy by the surface and the amount of CO2 emission. Data showed that annual cost of the LED devices are highly inexpensive than halogen and now the value is of great. However initial cost of the equipment 200% higher than halogen. Though LED devices are expensive in startup setting, the value of utilization factor is large and depreciation years of LED(30years) are longer than halogen(2years). Therefore, annual cost of LED can make up the minus. Consider the tendency of reducing price of LED devices, we can assume that annual cost of the LED will be lower than halogen devices. Further, in 3years the expense of LED and halogen is reversed.

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.

Realization of an IEEE 802.11g VoWLAN Terminal with Support of Adaptable Power Save and QoS During a Call (통화 중 적응적 Power Save와 QoS 지원이 가능한 IEEE B02.11g VoWLAN 단말기 구현)

  • Kwon, Sung-Su;Lee, Jong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.1003-1013
    • /
    • 2006
  • There is a serious problem in an 802.11g VoWLAN (Voice over Wireless LAN) terminal that talk time is less than 30% compared with an 802.11b terminal. It is almost impossible to achieve talk time level of the 802.11b MAC transmission method because IEEE 802.11g uses OFDM modulation, which is a kind of multi-carrier method and OFDM transmission speed is 54 Mbps faster than normal modulation. In this paper, a new concept of a Holdover time as a power saving method during a call with 802.11g terminal is suggested for the first time. Increase in the number of engaged terminals as a result of holdover time causes to QoS problem because of the increase in the number of back-off and then contention window. In this paper, to solve the QoS problem, a new approach is suggested such that when in down lint the sequence number of 802.11 G.711 is analyzed in the MAC of the terminal and then the Hold over time depending on loss rate is changed. Also, consumption of an electric current of 802.11b/g and MAC parameter's performance due to busy traffic caused by increase in the number of terminal are analyzed and then real data using VQT and Airopeek are analyzed.