• Title/Summary/Keyword: ESD protection

Search Result 131, Processing Time 0.027 seconds

A Study on AC Modeling of the ESD Protection Devices (정전기 보호용 소자의 AC 모델링에 관한 연구)

  • Choi, Jin-Young
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.136-144
    • /
    • 2004
  • From the AC analysis results utilizing a two dimensional device simulator, the ac equivalent-circuit modeling of the ESD protection devices is executed. It is explained that the ac equivalent circuit of the NMOS protection transistor is modeled by a rather complicated form and that, depending on the frequency range, the error can be large if it is modeled by a simple RC serial circuit. It is also shown that the ac equivalent circuit of the thyristor-type pnpn protection device can be modeled by a simple RC serial circuit. Based on the circuit simulations utilizing the extracted equivalent circuits, the effects of the parasitics in the protection device on the characteristics of LNA are examined when the LNA, which is one of the important RF circuits, is equipped with the protection device. It is explained that a large error can result in estimating the circuit characteristics if the NMOS protection transistor is modeled by a simple capacitor. It is also confirmed that the degradation of the LNA characteristics by incorporating the ESD protection device can be reduced a lot by adopting the suggested pnpn device.

  • PDF

A Study on a New ESD Protection Circuit with Parasitic PNP BJT Insertion Type with High Robustness Characteristics Based on SCR (SCR 기반 고감내 특성을 갖는 기생 PNP BJT 삽입형 새로운 ESD 보호회로에 관한 연구)

  • Chae, Hee-Guk;Do, Kyoung-Il;Seo, Jeong-Yun;Seo, Jeong-Ju;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.80-86
    • /
    • 2018
  • In this paper, we propose a new PNP bipolar insertion type ESD protection circuit with improved electrical characteristics than the existing ESD protection circuits SCR and LVTSCR. The proposed circuit has 8.59V trigger voltage which is about 9V lower than that of the conventional SCR, and the parasitic PNP has one more operation and high robustness characteristics. For the practical design of the proposed ESD protection circuit, the holding voltage was increased by increasing the base length of the parasitic PNP while increasing the variable L. To verify the electrical characteristics of the proposed device, Synopsys T-CAD simulator was used.

An Operating Circuits Design for preventing Electrostatic Discharge in Liquid Crystal Displays

  • Jo, Jo-Yeon;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.674-676
    • /
    • 2008
  • An electrostatic discharge (ESD) or a noise supplied from the outside has an effect on communication between the timing controller (TCON) and the memory element (EEPROM) through the interface between the timing controller and the memory element in liquid crystal displays (LCD). Therefore, we must apply ESD protection methods to LCD operating circuits for a normal operation. Our ESD protection circuit is to prevent from bi-directional communication errors between TCON and EEPROM due to an electrostatic discharge (ESD).

  • PDF

Design of high speed-low voltage LVDS driver circuit with the novel ESD protection device (새로운 구조의 ESD 보호소자를 내장한 고속-저전압 LVDS Driver 설계)

  • Lee, Jae-Hyun;Kim, Kui-Dong;Kwon, Jong-Ki;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low power consumption at the same time. Maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, we performed the layout high speed I/O interface circuit with the low triggered ESD protection device in one-chip.

  • PDF

Design and Analysis of SCR on the SOI structure for ESD Protection (ESD 보호를 위한 SOI 구조에서의 SCR의 제작 및 그 전기적 특성 분석)

  • Bae, Young-Seok;Chun, Dae-Hwan;Kwon, Oh-Sung;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.10-10
    • /
    • 2010
  • ESD (Electrostatic Discharge) phenomenon occurs in everywhere and especially it damages to semiconductor devices. For ESD protection, there are some devices such as diode, GGNMOS (Gate-Grounded NMOS), SCR (Silicon-Controlled Rectifier), etc. Among them, diode and GGNMOS are usually chosen because of their small size, even though SCR has greater current capability than GGNMOS. In this paper, a novel SCR is proposed on the SOI (Silicon-On-Insulator) structure which has $1{\mu}m$ film thickness. In order to design and confirm the proposed SCR, TSUPREM4 and MEDICI simulators are used, respectively. According to the simulation result, although the proposed SCR has more compact size, it's electrical performance is better than electrical characteristics of conventional GGNMOS.

  • PDF

TLP Properties Evaluation of ESD Protection Device of GGNMOS Type for Conventional CMOS Process (Conventional CMOS 공정을 위한 GGNMOS Type의 ESD 보호소자의 TLP 특성 평가)

  • Lee, Tae-Il;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.875-880
    • /
    • 2008
  • In this paper, we deal with the TLP evaluation results for GGNMOS in ESD protection device of conventional CMOS process. An evaluation parameter for GGNMOS is that repeatability evaluation for reference device($W/L=50\;{\mu}m1.0\;{\mu}m$) and following factors for design as gate width, number of finger, present or not for N+ gurad -ring, space of N-field region to contact and present or not for NLDD layer. The result of repeatability was showed uniformity of lower than 1 %. The result for design factor evaluation was ; 1) gate width leading to increase It2, 2) An increase o( finger number was raised current capability(It2), and 3) present of N+ gurad-ring was more effective than not them for current sink. Finally we suggest the optimized design conditions for GGNMOS in evaluated factor as ESD protection device of conventional CMOS process.

A Study on the Novel SCR NANO ESD Protection Device Design and fabrication (새로운 구조의 나노급 ESD 보호소자 설계 및 제작에 관한 연구)

  • Kim, Kui-Dong;Lee, Jo-Woon;Park, Sang-Jo;Lee, Yoon-Sik;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.161-169
    • /
    • 2005
  • This paper presents the new structural Low voltage LVTSCR and TWSCR ESD protection circuit. The proposed ESD protection circuit has lower triggering voltage than conventional circuits. And the LVTSCR has the triggering voltage of 9V, current of 7mA and can pass below 0.8KV (150mA/um). The triggering voltage of the Triple-well SCR measured to 6V and the current is 40mA. By the substrate and gate bias, the triggering voltage is lowered down to $4{\sim}5.5V$.

  • PDF

Characteristics of N-Type Extended Drain Silicon Controlled Rectifier ESD Protection Device (NED-SCR 정전기보호소자의 특성)

  • Seo, Y.J.;Kim, K.H.;Lee, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1370-1371
    • /
    • 2006
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latchup problem during normal operation. However, a modified NEDSCR device with proper junction / channel engineering demonstrates itself with both the excellent ESD protection performance and the high latchup immunity.

  • PDF

Design of Gate-Ground-NMOS-Based ESD Protection Circuits with Low Trigger Voltage, Low Leakage Current, and Fast Turn-On

  • Koo, Yong-Seo;Kim, Kwang-Soo;Park, Shi-Hong;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.725-731
    • /
    • 2009
  • In this paper, electrostatic discharge (ESD) protection circuits with an advanced substrate-triggered NMOS and a gate-substrate-triggered NMOS are proposed to provide low trigger voltage, low leakage current, and fast turn-on speed. The proposed ESD protection devices are designed using 0.13 ${\mu}m$ CMOS technology. The experimental results show that the proposed substrate-triggered NMOS using a bipolar transistor has a low trigger voltage of 5.98 V and a fast turn-on time of 37 ns. The proposed gate-substrate-triggered NMOS has a lower trigger voltage of 5.35 V and low leakage current of 80 pA.

Characteristics of Double Polarity Source-Grounded Gate-Extended Drain NMOS Device for Electro-Static Discharge Protection of High Voltage Operating Microchip (마이크로 칩의 정전기 방지를 위한 DPS-GG-EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of the grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2-nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF