• Title/Summary/Keyword: Drone technology

Search Result 509, Processing Time 0.031 seconds

oneM2M Standard based Low Altitude Drone/UAV Traffic Management System (oneM2M 표준 기반 저고도 무인기 관리 및 운영시스템)

  • Ahn, Il-Yeop;Park, Jong-Hong;Sung, Nak-Myoung;Kim, Jaeho;Choi, Sung-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.301-307
    • /
    • 2018
  • Unmanned Aerial Vehicles (i.e., drone) are gaining a lot of interest from a wide range of application domains such as infrastructure monitoring and parcel delivery service. In those service scenarios, multiple UAVs are involved and should be reliably operated by so-called UAV management system. For that, we propose oneM2M standard based UAV management and control system which is specifically targeted at traffic management of low-altitude UAVs. In this paper, we include oneM2M platform architecture and its implementation for UAV management system in conjunction with UAV interworking procedure.

Bio-inspired Evasive Movement of UAVs based on Dragonfly Algorithm in Military Environment

  • Gudi, Siva Leela Krishna Chand;Kim, Bo-sun;Silvirianti, Silvirianti;Shin, Soo Young;Chae, Seog
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.84-90
    • /
    • 2019
  • Applications of unmanned aerial vehicles (UAVs) in the military environment have become popular because they require minimum human contribution and can avoid accidents during missions. UAVs are employed in various missions such as reconnaissance, observation, aggression, and protection. Consequently, counter-measures, known as anti-drone technologies, have been developed as well. In order to protect against threats from anti-drone technologies and enhance the survivability of UAVs, this study proposes an evasive measure. The proposed bio-inspired evasive maneuver of a UAV mimics a dragonfly's irregular flight. The unpredictable UAV movement is able to confuse enemies and avoid threats, thereby enhancing the UAV's survivability. The proposed system has been implemented on a commercial UAV platform (AR Drone 2.0) and tested in a real environment. The experiment results demonstrate that the proposed flight pattern has larger displacement values compared to a regular flight maneuver, thus making the UAV's position is difficult to predict.

A Study for Drone to Keep a Formation and Prevent Collisions in Case of Formation Flying (드론의 삼각 편대비행에서 포메이션 유지 및 충돌 방지 제어를 위한 연구)

  • Cho, Eun-sol;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.499-501
    • /
    • 2016
  • In this paper, we suggest an advance method for maintaining a perceived behavior as triangle formation and preventing collision between each other in case of a flying drone. In the existing studies, the collision of the drone is only controlled by using light entered in the camera or the image processing. However, when there is no light, it is difficult to confirm the position of each other and they can collide because this system can not confirm the each other's position. Therefore, in this paper, we propose the system to solve the problems by using the distance and the relative coordinates of the three drones that were determined using the ALPS(Ad hoc network Localized Positioning System) algorithm. This system can be a new algorithm that will prevent collisions between each other during flying the drone object. The proposed algorithm is that we make drones maintaining a determined constant value of the distance between coordinates of each drone and the measured center of the drone of triangle formation. Therefore, if the form of fixed formation is disturbed, they reset the position of the drone so as to keep the distance between each drone and the center coordinates constant. As a result of the simulation, if we use the system where the supposed algorithm is applied, we can expect that it is possible to prevent malfunction or an accident due to collisions by preventing collisions of drones in advanced behavior system.

  • PDF

Estimation of Paddy CH4 Emissions through Drone-Image-Based Identification of Paddy Rice Straw Application & Winter Crop Cultivation (Drone 영상을 이용한 논 필지 볏짚 환원-동계 재배 확인 및 CH4 배출량 산정)

  • Jang, Seongju;Park, Jinseok;Hong, Rokgi;Hong, Joopyo;Kwon, Chaelyn;Song, Inhong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.21-33
    • /
    • 2021
  • Rice straw management and winter crop cultivation are crucial components for the accurate estimation of paddy methane emissions. Field-based extensive investigation of paddy organic matter management requires enormous efforts however it becomes more feasible as drone technology advances. The objectives of this study were to identify paddy fields of straw application and winter crop cultivation using drone images and to apply for the estimation of yearly methane emission. Total 35 sites of over 150ha in area were selected nationwide as the study areas. Drone images of the study sites were taken twice during summer and winter in 2018 through 2019: Summer images were used to identify paddy cultivation areas, while winter images for straw and winter crop practices. Drone-image-based identification results were used to estimate paddy methane emission and compared with conventional method. As the result, mean areas for paddy, straw application and winter crop cultivation were 118.9ha, 12.0ha, and 11.3ha, respectively. Overall rice straw application rate were greater in Gyeonggi-do(20%) and Chungcheongnam-do(12%), while winter crop cultivation was greatest in Gyeongsangnam-do(30%) and Jeolla-do(27%). Yearly mean methane emission was estimated to be 226.2kg CH4/ha/yr in this study and about 32% less when compared to 331.8kg CH4/ha/yr estimated with the conventional method. This was primarily because of the lower rice straw application rate observed in this study, which was less than quarter the rate of 55.62% used for the conventional method. This indicates the necessity to use more accurate statistics of rice straw application as well as winter crop practices into paddy methane emission estimation. Thus it is recommended to further study to link drone technology with satellite image analysis in order to identify organic management practices at a paddy field level over extensive agricultural area.

A Study on the Flight Safety Test of Drones for the Establishment of Toy Drone Safety Standards (완구용 드론 안전기준 재정을 위한 드론의 비행 안전성 테스트 연구)

  • Jin, Jung-Hoi;Kim, Gyou-Beom;Jin, Sae-Young
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.141-146
    • /
    • 2019
  • Economic analysis predicts that the drone market will grow, and the growth of the toy and hobby drone market is expected to gradually expand. Drone expectations are rising due to the net economic function of drone market growth, but accidents due to improper management and operations are also increasing. The difference in toy drone performance is incomparably small compared to industrial drone performance, but the ordinary buyer can not know whether the difference can cause an accident during use. The toy drones used in this study were obtained from KC and CE certification, and 20 kinds of drones were used. The flight time ranged from a minimum of 3 minutes to a maximum of 12 minutes, and the control distance ranged from a minimum of 20m to a maximum of 380m. Therefore, it is necessary to secure product safety through sampling inspection of the radio wave output of toy drones, and it is also necessary to mount an algorithm that automatically lowers the altitude or hover when exceeding the limit flight distance. For future research, we will build data to establish toy drone safety standards through a altitude testing and impact testing of toy drone.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.

Structural Analysis of a Composite Target-drone

  • Park, Yong-Bin;Nguyen, Khanh-Hung;Kweon, Jin-Hwe;Choi, Jin-Ho;Han, Jong-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2011
  • A finite element analysis for the wing and landing gear of a composite target-drone air vehicle was performed. For the wing analysis, two load cases were considered: a 5g symmetric pull-up and a -1.5g symmetric push-over. For the landing gear analysis, a sinking velocity of 1.4 m/s at a 2g level landing condition was taken into account. MSC/NASTRAN and LS-DYNA were utilized for the static and dynamic analyses, respectively. Finite element results were verified by the static test of a prototype wing under a 6g symmetric pull-up condition. The test showed a 17% larger wing tip deflection than the finite element analysis. This difference is believed to come from the material and geometrical imperfections incurred during the manufacturing process.

Isolation and Culture of Entomopathogenic Fungus, Cordyceps sphecocephala

  • Nam, Sung-Hee;Li, Chun-Ru;Hong, In-Pyo;Sung, Kyu-Byoung;Kang, Seok-Woo;Fan, Mei-Zhen;Li, Zeng-Zhi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • In this study, morphology of perithecia, asci, ascospores, etc. of C. sphecocephala were examined for its telemorphic characteristics. Its colony grew up to 32 mm in diameter on potato dextrose agar (PDA) for 30 days under the condition of $24{\pm}1^{\circ}C$. PDBLA and PDBAA media were selected as optimal media for C. sphecocephala, on which the growth was 1.5 times as fast as on PDA medium. Moreover, PDBLA medium induced successfully the synnemata of anamorphic state. C. sphecocephala was able to be proliferated in vitro on both larva and adult of honeybee drone as its substrate. After inoculated onto the drone larva, it produced mycelium at $24{\pm}1^{\circ}C$, with the maximum yield up to $67{\pm}3mg$ on the $50^{th}$ day.

A Study on the Measurement of the Beam Pattern of Array Antenna for VHF Radar using Active Beam Pattern Measuring Device and Drone (능동 빔패턴 측정장치 및 드론을 활용한 초단파레이다용 배열안테나의 빔패턴 측정에 대한 연구)

  • Kim, Ki-Jung;Lee, Sung-Je;Jang, Youn-Hui
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1031-1036
    • /
    • 2019
  • This study describes the technique of the beam pattern measurement of array antenna for VHF band radar using drone and active beam pattern measuring device. There is no anechoic chamber for measuring the beam pattern of a large size antenna in the country. In this study, to test the antenna beam pattern characteristics of the developed VHF band radar, the antenna beam pattern characteristics were tested by Drone mounting an Active Beam Pattern Measuring Device. By comparing the results of the pre-simulation analysis with the measured results for the antenna, we could confirm that the beamwidth and side-lobe characteristics are satisfactory. Through the antenna beam pattern measurement technology using Drone and Active Beam Pattern Measuring Device, the beam pattern measurement technology of array antenna of low frequency band and large antenna for low band radar will be used.

The Applicability of Avionics Simulation Model Framework by Analyzing the Performance (항공용 시뮬레이션 모델 프레임워크 성능 분석을 통한 적용성 평가)

  • Seo, Min-gi;Cho, Yeon-je;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.336-343
    • /
    • 2021
  • Avionics corresponds to the brain, nerves and five senses of an aircraft, and consists of aircraft mounted electronic equipment of communication, identification, navigation, weapon, and display systems to perform flight and missions. It occupies about 50% of the aircraft system, and its importance is increasing as the technology based on the 4th industrial revolution is developed. As the development period of the aircraft is getting shorter, it is definitely necessary to develop a stable avionics SIL in a timely manner for the integration and verification of the avionics system. In this paper, we propose a method to replace the legacy SIL with the avionics simulation model framework based one and evaluate the framework based on the result of alternative application.