• Title/Summary/Keyword: Divisor functions

Search Result 38, Processing Time 0.023 seconds

CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS

  • Kim, Daeyeoul;Bayad, Abdelmejid;Ikikardes, Nazli Yildiz
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.537-565
    • /
    • 2015
  • In this paper, we give relationship between Bernoulli-Euler polynomials and convolution sums of divisor functions. First, we establish two explicit formulas for certain combinatoric convolution sums of divisor functions derived from Bernoulli and Euler polynomials. Second, as applications, we show five identities concerning the third and fourth-order convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli or Euler polynomials.

A STUDY OF SUM OF DIVISOR FUNCTIONS AND STIRLING NUMBER OF THE FIRST KIND DERIVED FROM LIOUVILLE FUNCTIONS

  • KIM, DAEYEOUL;KIM, SO EUN;SO, JI SUK
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.435-446
    • /
    • 2018
  • Using the theory of combinatoric convolution sums, we establish some arithmetic identities involving Liouville functions and restricted divisor functions. We also prove some relations involving restricted divisor functions and Stirling numbers of the first kind for divisor functions.

TRIPLE AND FIFTH PRODUCT OF DIVISOR FUNCTIONS AND TREE MODEL

  • KIM, DAEYEOUL;CHEONG, CHEOLJO;PARK, HWASIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.145-156
    • /
    • 2016
  • It is known that certain convolution sums can be expressed as a combination of divisor functions and Bernoulli formula. In this article, we consider relationship between fifth-order combinatoric convolution sums of divisor functions and Bernoulli polynomials. As applications of these identities, we give a concrete interpretation in terms of the procedural modeling method.

DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES

  • Kim, Dae-Yeoul;Kim, Min-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.693-704
    • /
    • 2012
  • We consider Weierstrass functions and divisor functions arising from $q$-series. Using these we can obtain new identities for divisor functions. Farkas [3] provided a relation between the sums of divisors satisfying congruence conditions and the sums of numbers of divisors satisfying congruence conditions. In the proof he took logarithmic derivative to theta functions and used the heat equation. In this note, however, we obtain a similar result by differentiating further. For any $n{\geq}1$, we have $$k{\cdot}{\tau}_{2;k,l}(n)=2n{\cdot}E_{\frac{k-l}{2}}(n;k)+l{\cdot}{\tau}_{1;k,l}(n)+2k{\cdot}{\sum_{j=1}^{n-1}}E_{\frac{k-1}{2}(j;k){\tau}_{1;k,l}(n-j)$$. Finally, we shall give a table for $E_1(N;3)$, ${\sigma}(N)$, ${\tau}_{1;3,1}(N)$ and ${\tau}_{2;3,1}(N)$ ($1{\leq}N{\leq}50$) and state simulation results for them.

A STUDY OF COFFICIENTS DERIVED FROM ETA FUNCTIONS

  • SO, JI SUK;HWANG, JIHYUN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.359-380
    • /
    • 2021
  • The main purpose and motivation of this work is to investigate and provide some new results for coefficients derived from eta quotients related to 3. The result of this paper involve some restricted divisor numbers and their convolution sums. Also, our results give relation between the coefficients derived from infinite product, infinite sum and the convolution sum of restricted divisor functions.

A New Tree Modeling based on Convolution Sums of Restricted Divisor Functions (약수 함수의 합성 곱 기반의 새로운 나무 모델링)

  • Kim, Jinmo;Kim, Daeyeoul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.637-646
    • /
    • 2013
  • In order to model a variety of natural trees that are appropriate to outdoor terrains consisting of multiple trees, this study proposes a modeling method of new growth rules(based on the convolution sums of divisor functions). Basically, this method uses an existing growth-volume based algorithm for efficient management of the branches and leaves that constitute a tree, as well as natural propagation of branches. The main features of this paper is to introduce the theory of convolution sums of divisor functions that is naturally expressed the growth or fate of branches and leaves at each growth step. Based on this, a method of modeling various tree is proposed to minimize user control through a number of divisor functions having generalized generation functions and modification of the growth rule. This modeling method is characterized by its consideration of both branches and leaves as well as its advantage of having a greater effect on the construction of an outdoor terrain composed of multiple trees. Natural and varied tree model creation through the proposed method was conducted, and using this, the possibility of constructing a wide nature terrain and the efficiency of the process for configuring multiple trees were evaluated experimentally.