References
- J.M. Conway, R.K. Guy, The Book of Numbers, Springer-Verlag, New York, 1996: 258-259.
- L. Comtet, Advanced combinatorics, D Reidel Publishing Company, Boston. 1974.
-
A. Alaca, S. Alaca and K.S. Williams, The convolution sum
${\Sigma}_{m https://doi.org/10.4153/CMB-2008-001-1${\sigma}(m){\sigma}(n-16m)$ , Canad. Math. Bull. 51 (2008), 3-14. -
A. Alaca, S. Alaca and K.S. Williams, The convolution sums
${\Sigma}_{l+24m=n}$ ${\sigma}(l){\sigma}(m)$ and${\Sigma}_{3l+8m=n}$ ${\sigma}(l){\sigma}(m)$ , M. J. Okayama Univ. 49 (2007), 93-111. - B.C. Berndt, Ramanujan's Notebooks, Part II. Springer-Verlag, New York, 1989.
- B. Cho, D. Kim and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76 (2010), 495-508.
- B. Cho, D. Kim and J.-K. Koo, Modular forms arising from divisor functions, J. Math. Anal. Appl. 356 (2009), 537-547. https://doi.org/10.1016/j.jmaa.2009.03.003
- J.W.L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
- J.W.L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
- J.W.L. Glaisher, Expressions for the five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
- H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), 1593-1622. https://doi.org/10.1216/rmjm/1194275937
- J.G. Huard, Z.M. Ou, B.K. Spearman, and K.S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (2002), 229-274.
- G. Melfi, On some modular identities, de Gruyter, Berlin, 1998, 371-382.
- S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), no9, 159-184.