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A STUDY OF SUM OF DIVISOR FUNCTIONS AND
STIRLING NUMBER OF THE FIRST KIND DERIVED FROM
LIOUVILLE FUNCTIONS'

DAEYEOUL KIM, SO EUN KIM AND JI SUK SO*

ABSTRACT. Using the theory of combinatoric convolution sums, we estab-
lish some arithmetic identities involving Liouville functions and restricted
divisor functions. We also prove some relations involving restricted divisor
functions and Stirling numbers of the first kind for divisor functions.
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1. Introduction

The study of arithmetic identities is classical in number theory and such
investigations have been carried out by several mathematicians including Euler
and Gauss.

A function f : N — C is called an arithmetic function. If f is an arithmetic
function and n ¢ N we set f(n) = 0. The arithmetic function f is said to be
multiplicative if f(mn) = f(m)f(n) for all m, n € N with (m, n) = 1.

It d is positive integer, the Liouwville function denoted by A(d) is defined as

1 if d=1,
A(d) = L e e _ (1)
(-1 ifd=pi*---pi and s1+---+s. =1
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We know the arithmetic function oy (n) defined for all k € Z by

_ k
= d"
neN
d|n

where d runs through the positive integers dividing n. We set d(n) := og(n) and
o(n) := o1(n). We also make use of the following convention:

oi(N)=0if N¢Zor N<0, o(N):=01(N)=) d.
dN
Ramanujan [14] wrote several formulas for

0r(0)os(N) + 0(1)os(N = 1)+ - - - + 0,.(N)os(0).

Here, 0,-(0) = ((—7).

The history of the convolution sums involving the divisor functions o4(N)
goes back to Glaisher [8, 9, 10]. Many recent works on convolution formulas for
divisor functions can be found in B.C. Berndt [5]; H. Hahn [11]; J.G. Huard,
ZM. Ou, B.K. Spearman, and K.S. Williams [12]; G. Melfi [13]; B. Cho, D.
Kim, and J.-K. Koo [6, 7]; and A. Alaca, S. Alaca, and K.S. Williams [3, 4].

In this paper, instead of o (n) we study the arithmetic function Si(n) that
we define as follows for k € NU {0}

n) =Y Ad)d"

neN
d|n
Moreover, we study
S,(n) = [ |Sr(n)|} and Si(n) := > A(d) Sk(n/d),

d|n

for r € N, k € NU {0} where [z] is the greatest integer that is less than or equal
to x.
If p is a prime and s is a nonnegative integer, we have

1+ (71)sp(s+1)k
P+l
In this paper, we will prove the following theorems and corollary.

Theorem 1.1. Let o} (n) = 2din Ad) ok(d). Then Sk(n) = o} (n).

Sk(ps) =1 *pk +p2k — (*1)8175]6 _ (2)

Theorem 1.2. Ifn =p;®' ---pir is a positive integer and k € N, then we get

B s
i=1

Here,

1 otherwise.

e(si) = {0 if =0 (mod 2),
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Corollary 1.3. For a given positive integer n = pi* -+ - pir,
S S
> aaed) = {([3]+1) - ([5]+1)}-
d|n

In particular, if n is square-free, then

> A(d) oo(d) = A(n).

d|n
n
The (unsigned) Stirling number of the first kind { z] is defined by
x x " n+1 1
n!x(1+m)(1+2)~--(1+n)22[, ]xz ,

n n 0 0
With[l(),ifn<iand[ }{,}O,[]l,
1 0 ) 0

And we know

where 5"V (n) £1, S (n)=1and {7}, =0ifi>1+2ori<0.

For convenience, we denote as {"}}, = {"}.

Now, we present the following theorem for the recurrence formula of the
Stirling numbers of divisor functions.

Theorem 1.4. Let n € N. Then we obtain
()£
t) ) & 1 —1 &

2. Some Properties of Arithmetic functions o (n) and Si(n)

Theorem 2.1. (a) Sy is multiplicative.
(b) Let p be a prime. For k, s € N

Skt + (0 = 1)Sk(p®) — p*Sk(p* ") =0
and

Sk(pn) + (* = 1)Sk(n) — p*Sk(n/p) = 0.
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Proof. (a) Let m, n € N with (m, n) = 1. Let p; and g; be primes for each 1, j.
Let m = p1°'---pi*, n = qi* -~-q;j be factorizations of m, n € N into distinct
prime powers, respectively. Then we obtain

Sk(m)Sk(n)
=1+ (=Dpi 4+ (D)2 (ap2)" + -+ (1) (prpaps)* + -+ + A(m) (p2* - - pf)¥]
) [L4 (=1t + -+ (=1 (@1g2)* + - + (=1 (q1g203)" + -+ A() (7" -~ q}")"]
=1+ (=Dpf + o+ (D) + (D (pap2)* + -+ (1) ()" +
+ (=% (p1p2qn)” + -+ + (1) (prpaqrg2)* + -+ AMm)A(n) (pf* -+ PSPl - g )"
= Si(mn).
(b) If s is odd, then from (2)

1 +p(s+2)k
pk+1

. 1— p(s+1)k o 1+ psk:
Sk(p®) = ——=— and Si(p""!) = o

)

Hence, we have
Skt + (0 = 1)Sk(p°) — p"Sk(p*~") = 0.

Similarly, if s is even, then we also obtained same result.

Let n = p°N, where s € NU{0} and N € N with (N, p) = 1. If s = 0 then we
are done. Suppose s € N. Then multiplying the above theorem by Si(N) and
using part (a), we obtain the assertion of part (b). O

Remark 2.1. We set Si(n) = S(n). The first ten values of S;(n) (i = 1,2,3)
and oj(n) (j =1,2,3,) are given Table 1 and 2.

n |2]3 4] 5 6] 7 8910
Sty |12 [ 3] 4] 2] 6|5 | 7] 4
So(n) | 3] -8 [13] 24 | 24 | 48 | 51 | 73 | 72
Ss(n) | -7 | 26 | 53 | -124 | 182 | -342 | -459 | 703 | 868

Table 1. Values of S;(n) (i =1,2,3,n=2,...,9)

n [2]3][4]5]6] 78] 9] 10
o(n) |3 4] 7] 6 | 12| 8 | 15| 13 | 18
oa(n) | 5] 10| 21| 26 | 60 | 50 | 85 | 91 | 130
os(n) | 9| 28 [ 73 | 126 | 252 | 344 | 585 | 757 | 1134

Table 2. Values of 0;(n) (i =1,2,3,n=2,...,9)

Lemma 2.2. Let n be a positive integer. Then
#{d| d|n} is odd if and only if n is a perfect square and Sp(n) = 1. Here,
#A means the cardinality of the set A.
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Proof. Let n =p;°' ---pJr be a factorization of n into distinct prime powers. It
is well known that

#{d| dn}=(s1+1)--- (s +1).
Hence
#{d| d|n}is odd < all (s; +1)are odd
& all s; are even
< n is a perfect square and So(p;*) =1 for all ¢

< n is a perfect square and Sp(n) = 1.

([l
Corollary 2.3. (a) If n is a perfect square, then So(n) = 1.
(b) XM(n) = 1if and only if Sk(n) > 0 for all k € N.
Proof. 1t is trivial by Lemma 2.2 |

Remark 2.2. Let p be a prime such that p = 1 (mod 4). If s is odd, then
Sk(p*) =0 (mod 4) by (2).

Theorem 2.4. For a given positive integer n, if n =1 (mod 4) and A\(n) = —1
then Si(n) =0 (mod 4)

Proof. Let n = py® ---pr with [ = s34+ -+ s.. Since n = 1 (mod 4),

2 pi=3 (mod 4) Si 15 even. Here since A(n) = —1, [ is odd and there is an odd
number s; such that p; = 1 (mod 4). By Remark 2.2, Sk(p;j) =0 (mod 4)
and so Si(n) =0 (mod 4). O

Lemma 2.5. For a given positive integer n, we have
n) = Z Ad)o
d|n

Proof. Let n = p1°' ---pfr be a factorization of n into distinct prime powers.
Then

= A(d) Sk(n/d)

dn
A(1) Sk(n) + A(p1) Sk(n/p1) + A(p2) Sk(n/pz) “+ A(n) Sk(1)
= AD{AMF + A(p)ph + A(p2)ps + - - - + A(n)(n )’“}

+ AP+ Ap)pk + -+ An/p )(n/pl)’“}

+ Ap2){A@)1F + Mp2)ph + - - - + A(n/p2) (n/p2)"}

+ - AR)A(D)1F

=MD" + Ap){1* +pi} + Ap) {1" +p5} + -+
Am){1F +pf +ph + -+ 0"}
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=Y Mad) ) d}
dn dy|d

= A(d) ox(d).

d|n

This completes the proof of Lemma 2.5. O

3. Proofs of Theorem 1.1, Theoreml.2 and Corollary 1.3
Proof of Theorem 1.1. Using Lemma 2.5, we get Theorem 1.1. O

Lemma 3.1. For a prime p,

5 (»°) = A(p®) (1F + p?k 4 p** o 4 p%k)  if 5 is even, (2.4)
T A@Y) @8 + PP+ pE b pR)  if s ds odd. '

Proof. By Lemma 2.5, we have

Sp") = Y A(d) on(d)

d|p*
= A1) ok (1) + A(p) ok (p) + AP?) o1 () + -+ A(P*) o (p%)
:1k_(1k+pk)+<1k+pk+p2k)_(1k+pk+p2k+p3k)_~_._.
+(71)371(1k +pk+”.+p(sfl)k)+(71)s(1k +pk+.”+p(371)k +p5k)'

Therefore, we get

S (%) = 1% 4 p?k 4 pok if s=0 (mod 2), 3)
’ —(p* +p3F 4 4 pF) otherwise.
Thus, this completes the proof of Lemma 3.1. O

Proof of Theorem 1.2. 1If s is even, then we obtain
R Qk(g-‘rl) _ 1)
S S :1k 2k Sk:)\ G(p
k(P*) +p A p (p )7@%71)
2h([31+1) 1)
= \p® e(s)k (p

And if s is odd, then we obtain

s—1

) 2k(55E+1) _q
S s5— S p 2

L @PHIED 1)
=1

Since Sy is multiplicative. we obtain

— )\(ps)pe(s)

Sk(n) = Sp(p1®') x -+ x Sk(p:®) x - x Sp(py*r)



Divisor functions and Stirling number of the first kind 441

2k( FIHD 1)

=[IAe H“”kﬂ—)
H e(sl)kH 2k[2+1)71)

This completes the proof of the theorem. ([l
Proof of Corollary 1.3. By Lemma 2.5, we have

> (@) oo Z)\ ) So(n/d) = ZSO A(n/d)

d|n

= > So(d) A(n/d).
d|n
d: perfect square

Here, if d is a perfect square, then So(d) = 1 and A(n/d) = A(n)/\(d) = A(n).

Hence
D AMdood)= Y So(d)An/d)
d|n d|n
d: perfect square

= A(n) Z 1.

d|n
d : perfect square

Now, d is a perfect square divisor of n if and only if d is a product of each numbers

chosen in the sets {1, p?, ..., p (/21 00 {1, p2, ... p, 2/ Hence, we
obtain
_ 51 (]2
S =X {([5] 1) ([5]+1)}
This completes the proof of the corollary. (Il

Example 3.2. Some value of S;(n) (i = 1, 2, 3) are give Table 3.

n [2]3]4]6] 8 9] 12]16] 24 36
() [-1]-1] 2 22 2321 4
Sim) 2356 [-10[10]-15 | 21 [ 30 | 50
(n) |-4]-9[17]36]-68]82]-153 273|612 1394

—

Table 3. Some values of S;(n)

4. Applications of quasi-Stirling number of the first kind
Recall that we defined
n):=Y Md)d" and  Sj(n) = [ |Sk(n)|}.

neN
d|n
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Lemma 4.1. Ifn is a positive integer greater than 1 and k € N, then
(a) Sk(n) <n. B
(b) For a large integer k, Si(n)=mn—1.

Proof. If p is a prime and s is a nonnegative integer, from (2) we have

1 1 —1)$ (s+1)k
psk (1_pk) <|Sk(ps)|:‘ +( )p sk

<
pF+1 P

for all k > 0. If n = p1°* ---pJr, then

1 1
nk<1—>~-~<1—)< Sk(n)| < nk.
ok s |Sk(n)

(a) Hence, we have Sy (n) = [{“/\Sk(n)q < /|Sk(n)] < n.

(b) Take a large integer k such that pf > p1*---pi~ =n for all i and k > r.
Then

1-— for each 1.

SRS

Hence,

and so

Recall that we defined gél)(n) = Si(n) and Slil)(n) =
I > 2. Then we get the following corollary.

Corollary 4.2. Letn € N—{1}. There exists I € N satisfying
S,(Cl)(n) =1 and §k(l71)(n) # 1.
Proof. If we let Si(n) = m, then by the above Lemma 4.1, we have
n > S(n) = m > Sy(m) = Sk(S{" (n) = S (n).
By continuing this process, we obtain the following decreasing sequence:
n>Sn)>5Pm) > > 5 m) > 50m) =1,

from which the corollary follows. (Il
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Example 4.3. The first eleven values of 5’5”(12) (i =1,2,3) are given Table 4.

] 2 [3[4[5[6]7[8[9[10]11
sPaz)y 6|2 [ttt |afafa]1]1]1
SPazyl1o0] 8 [7]6]al3]2l1]1]1]1
sPaz)[1f1wo]ols|7|6]s5]a]3]2]1

Table 4. Some values of S'i(l)(12)
Proof of Theorem 1.4. Let Si(n) = m, then

(@ + Sp(n) (@ + 57 (n) -+ (x + 8 ()
= (z+m)(x+ Sp(m))--- (x+1)

Multiply (z + n) to both hand sides of the above equality. Then we obtain

Hence, we obtain our result. O
Example 4.4. Let n = 12. Then S(12) =6, S(6) = 2 and S (6) = 1. From
(4 6)(z+ 5(6))(x+852(6)) = (x+6)(z+2)(z + 1)

-

we have {0} = 12, {0} = 20, {8} =0, {3} = 1, {2} = {2} = {£} = 0. Hence,

by Theorem 1.4, we have

12 12 12
{0}:1222144, {1}:12-20+12:252, {2}:12-9+10:118,

Pl ppage=on [Pl opopi=n [P 22
30 I I 3 A § 0
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And so,

(x+12)(z + 5(12))(z + 52 (12)) - - - (z + SV (12))
= 144 + 252z + 11822 + 2123 + 2*.
Corollary 4.5. If n <5, then

G =]

Proof. Since S(5) = 4, S@(5) =3, §G)(5) =2, SW(5) =2, SO)(5) = 1, we
have

5
3 {f}x = (z+5)(z+ 8(3))(@ + 52 (5)) (@ + 53 (5)) (x + SV (5)) (z + 5O (5))

i=0
=@+5)(x+4)(z+3)(z+2)(z+1)

HESE P

fraard i +1
e
P 7+

Hence, the proof is completed. ([

xj’/

Remark 4.1. By using Theorem 1.4 and Corollary 4.5, we can compute {7;}
The first ten values of {#} (i =1,...,7) are given Table 5.

3 [0 T OF [T [0 [ [ {6 [ {72 ][ St

n=1 |1 [ 1 000000

n=2]2 | 3 | 1 |0 00001
n=3]6 | 11 | 6 | 10000 2
n=4 |24 [ 50 | 3 |10 1 0] 0 0] 3
n=5 |120 | 274 | 225 | 85 | 156 | 1 | 0 | 0 | 4
n=6]12 [ 2 | 9 | 1 [0 0] 0 0] 2
n=7 |84 152 | 83 |16 | 1 | 0] 0 0 | 6
n—=8 | 960 | 2312 | 1850 | 905 [ 205 | 23 | 1 | 0 | 5
n=9 | 756 | 1452 | 899 | 227 | 25 | 1 | 0 | 0 | 7
n—10]240 | 524 | 380 135 20 | T | 0 | 0 || 4

Table 5.

Corollary 4.6. For each n, there exists a large integer k such that

B
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Proof. By Lemma 4.1, there exists a large integer k& such that Si(n) = n — 1.
Hence

> {n}x = (¢ +n)(@ + Se(n)(@ + 57 () - (= + 5, (n))
i=0
=@+n)(z+n-1))(z+(n-2) - (x+]1)
_ - n+ 1 L1
X[
" n+1 i
=2 [i+ 1] v
=0
It implies our result. ([
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