DOI QR코드

DOI QR Code

CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS

  • Kim, Daeyeoul (National Institute for Mathematical Sciences) ;
  • Bayad, Abdelmejid (Universite d'Evry Val d'Essonne Departement de mathematiques) ;
  • Ikikardes, Nazli Yildiz (Department of Elementary Mathematics Education Necatibey Faculty of Education Balikesir University)
  • Received : 2014.08.18
  • Published : 2015.05.01

Abstract

In this paper, we give relationship between Bernoulli-Euler polynomials and convolution sums of divisor functions. First, we establish two explicit formulas for certain combinatoric convolution sums of divisor functions derived from Bernoulli and Euler polynomials. Second, as applications, we show five identities concerning the third and fourth-order convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli or Euler polynomials.

Keywords

References

  1. A. Bazso, A. Pinter, and H. M. Srivastava, A refinement of Faulhaber's theorem concerning sums of powers of natural numbers, Appl. Math. Lett. 25 (2012), no. 3, 486-489. https://doi.org/10.1016/j.aml.2011.09.042
  2. B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.
  3. M. Besge, Extrait d'une lettre de M. Besge a M. Liouville, J. Math. Pures Appl. 7 (1862), 256.
  4. B. Cho, D. Kim, and H. Park, Evaluation of a certain combinatorial convolution sum in higher level cases, J. Math. Anal. Appl. 406 (2013), no. 1, 203-210. https://doi.org/10.1016/j.jmaa.2013.04.052
  5. W. Chu and R. R. Zhou, Convolutions of Bernoulli and Euler polynomials, Sarajevo J. Math. 6(19) (2010), no. 2, 147-163.
  6. A. Erdelyi, Higher Transcendental Functions. Vol 1, McGraw Hill, New York, 1953.
  7. J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Messenger Math. 14 (1885), 156-163.
  8. H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), no. 5, 1593-1622. https://doi.org/10.1216/rmjm/1194275937
  9. J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium, II (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.
  10. D. Kim and A. Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory Appl. 2013 (2013), 81, 23 pp.
  11. D. Kim and N. Y. Ikikardes, Certain combinatoric Bernoulli polynomials and convolution sums of divisor functions, Adv. Difference Equ. 2013 (2013), 310, 11 pp.
  12. A. Kim, D. Kim, and L. Yan, Convolution sums arising from divisor functions, J. Korean Math. Soc. 50 (2013), no. 2, 331-360. https://doi.org/10.4134/JKMS.2013.50.2.331
  13. D. Kim and Y. K. Park, Bernoulli identities and combinatoric convolution sums with odd divisor functions, Abstr. Appl. Anal. 2014 (2014), Article ID 890973, 8 pages.
  14. D. Kim and Y. K. Park, Certain Combinatoric convolution sums involving divisor functions product formulae, Taiwanese J. Math. 18 (2014), no. 3, 973-988. https://doi.org/10.11650/tjm.18.2014.3608
  15. D. B. Lahiri, On Ramanujan's function ${\tau}$(n) and the divisor function ${\sigma}$(n). I, Bull. Calcutta Math. Soc. 38 (1946), 193-206.
  16. G. Melfi, On some modular identities, Number Theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998.
  17. L. Navas, F. J. Ruiz, and J. L. Varona, Old and new identities for Bernoulli polynomials via Fourier series, Int. J. Math. Math. Sci. 2012 (2012), Article ID 129126, 14 pp.
  18. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), no. 9, 159-184.
  19. Y. Simsek, Elliptic analogue of the Hardy sums related to elliptic Bernoulli functions, Gen. Math. 15 (2007), no. 3, 3-23.
  20. H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), no. 4, 375-380. https://doi.org/10.1016/S0893-9659(04)90077-8
  21. Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000), no. 1-3, 193-223. https://doi.org/10.1016/S0166-218X(00)00184-0
  22. Z.-H. Sun, Legendre polynomials and supercongruences, Acta Arith. 159 (2013), no. 2, 169-200. https://doi.org/10.4064/aa159-2-6
  23. Z.-H. Sun, Congruences concerning Legendre polynomials. III, Int. J. Number Theory 9(2013), no. 4, 965-999. https://doi.org/10.1142/S1793042113500097
  24. K. S. Williams, The convolution sum ${\Sigma}_{m(n-8m), Pacific J. Math. 228(2006), no. 2, 387-396. https://doi.org/10.2140/pjm.2006.228.387
  25. K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.
  26. K. S. Williams, The parents of Jacobi's four squares theorem are unique, Amer. Math. Monthly 120 (2013), no. 4, 329-345. https://doi.org/10.4169/amer.math.monthly.120.04.329

Cited by

  1. TRIPLE AND FIFTH PRODUCT OF DIVISOR FUNCTIONS AND TREE MODEL vol.34, pp.1_2, 2016, https://doi.org/10.14317/jami.2016.145
  2. A PRODUCT FORMULA FOR COMBINATORIC CONVOLUTION SUMS OF ODD DIVISOR FUNCTIONS vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.243