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Abstract. The study of convolution sums for divisor functions is an area
that has been extensively researched by many mathematicians including

Ramanujan. The aim of this paper is to find the formula for convolution

sum of divisor functions with coprime conditions.
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1. Introduction

Throughout this paper, N will be denoted by the set of natural numbers,
N0 := N ∪ {0} and p be a positive prime integer. For d, l ∈ N, s ∈ N0 and
n ∈ N − {1}, we define some necessary divisor functions and their convolution
sums for later use:

σs(l) =
∑
d|l

ds, σ(l) := σ1(l) =
∑
d|l

d, ζs(l) := ls, ζ(l) := ζ0(l) = l0,

K(n) :=

n−1∑
m=1

mσ(m)σ(n−m), U(n) :=

n−1∑
m=1

gcd(m,n−m)=1

mσ(m)σ(n−m).

Glaisher ([3], [9, Theorem 12.7]) proved

n−1∑
m=1

σ(m)σ(n−m) =
1

12
(5σ3(n)− (6n− 1)σ(n)) (1)
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and
n−1∑
k=1

kσ(k)σ(n− k) =
n

24
(5σ3(n)− (6n− 1)σ(n)) . (2)

Later Ramanujan [7] obtained (1) again, and appears also in [2, p. 300]. Recently,
in [4], S. Kong, Y. Li and D. Kim were considered convolution sums of the form

n−1∑
m=1

gcd(m,n−m)=1

σ(m)σ(n−m).

In this paper, we prove the following theorem, which is slightly different form
of the convolution sums considered in [3, 4, 7].

Theorem 1.1. Let α ∈ N− {1}. Then
24U(pα)

p2α−1(p2 − 1)
− (−1)α =

{
5(p− 1)

(
σ4(p

n)− p2σ4(p
n−1)

)
, if α = 2n+ 1,

5(p− 1)2(p+ 1)σ4(p
n−1), if α = 2n.

Corollary 1.2. If α ∈ N− {1} then

24U(pα) ≡ 0 (mod p2α−1) and
24U(pα)

p2α−1(p2 − 1)
≡ (−1)α (mod 5).

2. Preliminaries

It is well known that arithmetical functions are rings for addition and Dirichlet
convolution sums [5, 6, 8]. Let h1 and h2 be arithmetical functions. The Dirichlet
convolution sum h1 ∗ h2 of h1 and h2 is defined by

(h1 ∗ h2)(m) =
∑
d|m

h1(d)h2

(m
d

)
(3)

for all m ∈ N. Here, d are positive divisors of m. Define the function δ by
δ(1) = 1 and δ(m) = 0 for m > 1. Then h1 ∗ δ = δ ∗ h1 = h1. An arithmetical
function h−1

1 is called an inverse of h1 if h1 ∗ h−1
1 = h−1

1 ∗ h1 = δ. h1 is a unit if
and only if h1(1) ̸= 0. It is well known that

h−1
1 (1) =

1

h1(1)
(4)

and

h−1
1 (m) = − 1

h1(1)

∑
d|m
d>1

h1(d)h
−1
1

(m
d

)
(5)

for all m > 1.
Let p be a prime and 1 ≤ k ≤ pn − 1 with k, n ∈ N. Let gcd(k, pn − k) = d.

Then there exist a, b ∈ N such that k = ad, pn − k = db and pn = d(a + b).
Hence we obtain

gcd(k, pn − k) = 1 or p or . . . or pn−1. (6)
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If 1 ≤ i ≤ n− 1 and

pi|k then pi|(pn − k). (7)

So, if gcd(k, pn − k) = pi then gcd( k
pi ,

pn−k
pi ) = 1, p ∤ k

pi and p ∤ pn−k
pi and

kσ(k)σ(pn − k) =
(
piσ(pi)2

)( k

pi
σ

(
k

pi

)
σ

(
pn − k

pi

))
. (8)

By (7) and (8), we deduce that

pn−1∑
k=1

kσ(k)σ(pn − k) =

n−1∑
i=0

pn−1∑
k=1

gcd(k,pn−k)=pi

kσ(k)σ(pn − k). (9)

By (8) and (9), we have

K(pn) =

pn−1∑
k=1

kσ(k)σ(pn − k) =

n∑
i=0

piσ(pi)2U(pn−i) = [(ζ1σ
2) ∗ U ](pn). (10)

Here, K(1) := U(1) := 0. By (2) and (10), we have

U(pn) =
(
(ζ1σ

2)−1 ∗K
)
(pn) =

(
(ζ1σ

2)−1 ∗
(

5

24
ζ1σ3 −

1

4
ζ21σ +

1

24
ζ1σ

))
(pn).

(11)

3. Convolution sums of divisor functions

Using (11), to obtain the result of Theorem 1.1, it is necessary to find the
inverse divisor function. In order to find the inverse divisor functions, we in-
troduce some properties of multiplicative functions that are mainly used in this
article.

Proposition 3.1. [5, Chapter 1]

(1) If f and g are multiplicative functions then f ∗ g is also a multiplicative
function.
(2) If f is a multiplicative function then f−1 is also a multiplicative function.
(3) If f and g are multiplicative functions then fg is a multiplicative function.
(4) A multiplicative function f is completely multiplicative if and only if
f(g ∗ h) = fg ∗ fh for all arithmetical functions g and h.

Remark. It is easily checked that

ζs(mn) = (mn)s = msns = ζs(m)ζs(n)

with s ∈ N0. So, ζs is a completely multiplicative function. On the other hand,
we note that

σs(m) =
∑
d|m

ds =
∑
d|m

ds
(m
d

)0
= (ζs ∗ ζ)(m). (12)
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Thus,

σs is a multiplicative function (13)

by Proposition 3.1(1).

The Möbius function, which is well known to us and plays an important role
in the inverse arithmetical function, is introduced below. Möbius function µ(n)
([1, Definition 6.2]), n ∈ N, is defined by

µ(n) =

 1, if n = 1,
0, if n is not square-free,
(−1)k, if n = p1p2 · · · pk,

(14)

where pi are distinct prime integers.
It is easily check that

ζ−1 = µ and ζ−1
1 = ζ1µ. (15)

So, we get

Lemma 3.2. Let p1,. . . ,pr be distinct primes. Then

ζ−1
1 (n) =

 1, if n = 1,
(−1)r · n, if n = p1 · · · pr,
0, otherwise.

Theorem 3.3. Let α ∈ N0. Then

σ−1(pα) =


1, if α = 0,
−p− 1, if α = 1,
p, if α = 2,
0, if α ≥ 3.

(16)

Proof. By (13) and Proposition 3.1, σ−1 is a multiplicative function. Thus,
the proof can be easily completed by examining only the case of σ−1(pm) with
m ∈ N0. By (4) and (5), σ−1(1) = 1

σ(1) = 1,

σ−1(p) = − 1

σ(1)

∑
d|p
d>1

σ(d)σ−1
(p
d

)
= −σ(p)σ−1(1) = −(p+ 1)

and

σ−1(p2) = −
(
σ(p)σ−1(p) + σ(p2)σ−1(1)

)
= p.

By (5), we obtain

σ−1(p3) = −
(
σ(p)σ−1(p2) + σ(p2)σ−1(p) + σ(p3)σ−1(1)

)
= 0.

Using the mathematical induction, we want to show that

σ−1(pm) = 0

with m > 2. Assume that
σ−1(pi) = 0 (17)
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with 3 ≤ i ≤ m− 1. By (5) and (17),

σ−1(pm) = − 1

σ(1)

∑
d|pm
d>1

σ(d)σ−1(
pm

d
)

= −
(
σ(pm−2)σ−1(p2) + σ(pm−1)σ−1(p) + σ(pm)σ−1(1)

)
= 0

with m ≥ 3. Therefore, Theorem 3.3 is obtained. □

Corollary 3.4. Let p1, p2, . . . , pt be distinct primes. If n is an integer then

σ−1(n) =


1, if n = 1,
(−1)tσ(n), if n = p1 · · · pt,√
n, if n = p21 · · · p2t ,

(−1)t−r(
∏r

i=1 pi)(
∏r+1

i=1 (pi + 1)), if n = p21 · · · p2rpr+1 · · · pt,
0, otherwise.

Theorem 3.5. Let α, k ∈ N0. Then

(ζkσ)
−1(pα) =


1, if α = 0,
−pk(p+ 1), if α = 1,
p2k+1, if α = 2,
0, if α ≥ 3.

Proof. By Proposition 3.1, it is easily checked that

δ = ζk(σ ∗ σ−1) = (ζkσ) ∗ (ζkσ−1).

So,

(ζkσ)
−1(pα) = ζk(p

α)σ−1(pα).

The proof of Theorem 3.5 is completed by Theorem 3.3. □

Corollary 3.6. Let p1, p2, . . . , pt be distinct primes and k ∈ N0. Then (ζkσ)
−1(n) =

1, if n = 1,

(−1)tnkσ(n), if n =
∏t

i=1 pi,

nk
√
n, if n =

∏t
i=1 p

2
i ,

(−1)s(
∏s

i=1 p
k
i (pi + 1))(

∏t
j=s+1 p

2k+1
j ), if n = (

∏s
i=1 pi)(

∏t
j=s+1 p

2
j ),

0, otherwise.

Theorem 3.7. Let α ∈ N0. Then

(σ2)−1(pα) =


1, if α = 0,
−(p+ 1)2, if α = 1,
2p3 + 3p2 + 2p, if α = 2,
2 · (−1)αpα−1(p+ 1)2, if α ≥ 3.

(18)
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Proof. Since σ is a multiplicative function, (σ2)−1 is also a multiplicative func-
tion by Proposition 3.1. It is easily checked that (σ2)−1(1) = 1,

(σ2)−1(p) = −
∑
d|p
d>1

σ2(d)(σ2)−1
(p
d

)
= −(p+ 1)2 and

(σ2)−1(p2) = −
∑
d|p2
d>1

σ2(d)(σ2)−1

(
p2

d

)
= 2p3 + 3p2 + 2p.

(σ2)−1(p3) = −
∑
d|p3
d>1

σ2(d)(σ2)−1

(
p3

d

)
= 2 · (−1)3p2(p+ 1)2.

(σ2)−1(p4) = −
∑
d|p4
d>1

σ2(d)(σ2)−1

(
p4

d

)
= 2 · (−1)4p3(p+ 1)2.

We use the same method as in Theorem 3.3, i.e., mathematical induction. As-
sume that for 3 ≤ i ≤ α− 1,

(σ2)−1(pi) = −
∑
d|pi
d>1

σ2(d)(σ2)−1

(
pi

d

)
= 2 · (−1)ipi−1(p+ 1)2.

Then we obtain

(σ2)−1(pα) = −
∑
d|pα
d>1

σ2(d)(σ2)−1

(
pα

d

)

= −
α∑

i=1

σ2(pi)(σ2)−1(pα−i)

= −σ2(pα)(σ2)−1(1)− σ2(pα−1)(σ2)−1(p)− σ2(pα−2)(σ2)−1(p2)

− σ2(pα−3)(σ2)−1(p3)−
α−4∑
i=1

σ2(pi)(σ2)−1(pα−i)

= −p
(
σ2(pα−1)(σ2)−1(1) + σ2(pα−2)(σ2)−1(p) + σ2(pα−3)(σ2)−1(p2)

)
− σ2(pα)(σ2)−1(1)− σ2(pα−1)(σ2)−1(p)

− σ2(pα−2)(σ2)−1(p2)− σ2(pα−3)(σ2)−1(p3)− p(σ2)−1(pα−1)

= −p(σ2)−1(pα−1) = 2 · (−1)αpα−1(p+ 1)2.

This completes the proof of Theorem 3.7. □

Corollary 3.8. Let p1, . . . , pt be distinct primes and αk(s + 1 ≤ k ≤ t) ∈
N− {1, 2}. Then (σ2)−1(1) = 1 and

(σ2)−1(p1 · · · prp2r+1 · · · p2sp
αs+1

s+1 · · · pαt
t )
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= (−1)r2t−s
r∏

i=1

(pi + 1)2
s∏

j=r+1

(2p3j + 3p2j + 2pj) ·
t∏

k=s+1

(−1)αkpαk−1
k (pk + 1)2.

Theorem 3.9. Let α, k ∈ N0. Then

(ζkσ
2)−1(pα) =


1, if α = 0,
−pk(p+ 1)2, if α = 1,
p2k+1(2p2 + 3p+ 2), if α = 2,
(−1)α2p(k+1)α−1(p+ 1)2, if α ≥ 3.

Proof. It is trivial by Proposition 3.1 and Theorem 3.7. □

Corollary 3.10. Let k, r, s, t ∈ N0, α1, . . . , αr ∈ N−{1, 2}, p1, . . . , pr, pr+1, . . . ,
ps, ps+1, . . ., pt be distinct primes and n = pα1

1 · · · pαr
r pr+1 · · · psp2s+1 · · · p2t . Then

(ζkσ
2)−1(1) = 1 and

(ζkσ
2)−1(n) = (−1)α1+···+αr+s−r 2rσ(p1p2 · · · ps)2

·
r∏

i=1

p
(k+1)αi−1
i

s∏
j=r+1

pkj

t∏
l=s+1

p2k+1
l (2p2l + 3pl + 2).

Using these results, we will prove Theorem 1.1.
Proof of Theorem 1.1

Proof. Let f(pi) :=
(
ζ1σ

2
)−1

(pi) and g(pi) :=
(
5ζ1σ3 − 6ζ21σ + ζ1σ

)
(pi) with

i ∈ N0. By (11), it is easily checked that

24U(pα) = (g ∗ f)(pα) =
α∑

i=1

g(pi)f(pα−i).

Here, α ∈ N. Assume that

24U(pα) =

α∑
i=1

g(pi)f(pα−i) (19)

= p2α−1(p2 − 1)((−1)α + 5(p− 1)

α∑
i=1

(−1)α+ip2(i−1)).

Suppose that (19) holds up to α− 1. Now we obtain

24U(pα) =

α∑
i=0

g(pi)f(pα−i) = g(pα)f(1) + g(pα−1)f(p) (20)

+ g(pα−2)f(p2) + g(pα−3)f(p3) +

α−4∑
i=0

g(pi)f(pα−i)

= g(pα)f(1) + g(pα−1)f(p) + g(pα−2)f(p2) + g(pα−3)f(p3)

+ p2
(
g(pα−1)f(1) + g(pα−2)f(p) + g(pα−3)f(p2)

)
− p224U(pα−1)
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and

5(p− 1)(p2 − 1)p4α−3 = g(pα)f(1) + g(pα−1)f(p) + g(pα−2)f(p2)

+ g(pα−3)f(p3) + p2
(
g(pα−1)f(1) + g(pα−2)f(p) + g(pα−3)f(p2)

)
. (21)

A comparison of (20) and (21) yields the identity

24U(pα) = 5(p− 1)(p2 − 1)p4α−3 − 24p2U(pα−1)

= 5(p− 1)(p2 − 1)p4α−3 − p2(p2 − 1)p2α−3

×

(
(−1)α−1 + 5(p− 1)

α−1∑
i=1

(−1)α−1+ip2(i−1)

)

= p2α−1(p2 − 1)

(
(−1)α + 5(p− 1)

α∑
i=1

(−1)α+ip2(i−1)

)
.

Expanding and rearranging, we get

24U(pα)

p2α−1(p2 − 1)
− (−1)α =

{
5(p− 1)

(
σ4(p

n)− p2σ4(p
n−1)

)
, if α = 2n+ 1,

5(p− 1)2(p+ 1)σ4(p
n−1), if α = 2n.

□

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

References

1. A. Dujella, Number Theory, Školska knjiga, Zagreb, 2021.
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