• Title/Summary/Keyword: Disturbed state concept

Search Result 25, Processing Time 0.017 seconds

Modified Disturbed State Concept for Dynamic Behaviors of Fully Saturated Sands (포화사질토의 동적거동규명을 위한 수정 교란상태개념)

  • 최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.107-114
    • /
    • 2003
  • There are many problems in the prediction of dynamic behaviors of saturated soils because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical constitutive models based on the effective stress concept have been proposed but most models hardly predict the excess pore water pressure and strain softening behaviors correctly In this study, the disturbed state concept (DSC) model proposed by Dr, Desai was modified to predict the saturated soil behaviors under the dynamic loads. Also, back-prediction program was developed for verification of modified DSC model. Cyclic triaxial tests were carried out to determine DSC parameters and test result was compared with the result of back-prediction. Through this research, it is proved that the proposed model based on the modified disturbed state concept can predict the realistic soil dynamic characteristics such as stress degradation and strain softening behavior according to dynamic process of excess pore water pressure.

  • PDF

A Study on the Behavior of Staturated Sandy Soils Under Dynamic Loads using Disturbed State Concept (교란상태개념모델을 이용한 포화사질토의 동적거동에 관한 연구)

  • 정철민;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.193-201
    • /
    • 2000
  • 교란상태개념(Disturbed State Concept;DSA)모델릉 이용하여 포화사질토의 동역학적 거동을 모사하는 예측기법을 개발하였다. 실내진동전단시험 자료로부터 DSC모델 매개변수를 찾고, DSC 모델을 이용하여 전개한 응력중분과 변형률중분의 관계를 표현하는 탄소성구성방정식으로부터 진동하중을 받는 지반재료의 간극수압 및 유효응력 변화, 그리고 축자응력-축방향변형률 거동을 예측하였다. 압축 및 인장 재하시에는 DSC모델을 사용하여 변형률 경화(strain-hardening)및 진동하중에 의한 변형률 연화(cyclic-softening)현상을 모사하고, 제하(unloading)시에는 선형탄성모델을 사용하여 근사화하였다. 예측 결과를 실내전단시럼 결과와 비교하여 예측기법을 검증하였다.

  • PDF

Applications of Disturbed State Concept for the dynamic behaviors of fully saturated soils (포화사질토의 동적거동규명을 위한 교란상태개념의 이용)

  • 최재순;박근보;서경범;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-147
    • /
    • 2003
  • There are many problems in the prediction of soil dynamic behaviors because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical methods based on the dynamic constitutive model have been proposed but the model hardly predict the excess pore water pressure directly. In this study, the verification on the disturbed state concept (DSC) model, proposed by Dr, Desai was performed. Some laboratory tests such as conventional triaxial tests and cyclic triaxial tests were carried out to determine DSC Parameters and then disturbance values are determined by the proposed equation. Through this verification, it is proved that the disturbed state concept can express reliably the soil dynamic characteristics such as excess pore water pressure and strain softening behavior. It is also found that the critical disturbance which is determined at the minimum curvature of disturbance function can be a the specific index.

  • PDF

Disturbed State Modeling for Fully Saturated Sand under Dynamic Load

  • Park, Inn-Joon;Kim, Soo-Il
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.47-62
    • /
    • 1998
  • The disturbed state concept (DSC) proposed here is based on the idea that a deforming material element can be treated as a mixture of two constituent parts in the relative intact (Rl) and fully adjusted (FA) states, referred to as reference states. Based on this idea, DSC provides a unified constitutive model for the characteristics of saturated sands under cyclic loading. The model parameters for saturated sands are evaluated by using data from truly triaxial test device, The laboratory test results are also used for the verification of D SC model. In general, the model predictions are found to provide satisfactory correlation with the test results. From the results of this research, it can be stated that the DSC model is capable of characterizing the cyclic behavior of saturated sands under dynamic loading.

  • PDF

Disturbed State Modeling for joints of Rock(Theory and Implementation) (암반절리에 대한 교란상태 모델링 (이론과 응용))

  • 박인준;전석원
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.200-208
    • /
    • 1998
  • This research is intended to investigate the behavior of the jointed rock under various loading conditions: static or dynamic load. The distributed state concept (DSC) is based on the idea that the response of the joint can be related to and expressed as the response of the reference states : relative intact (RI) and fully adjusted (FA) states. In the DSC, an initially RI joint modifies continuously through a process of natural self-adjustment, and a part of it approaches the FA state at randomly disturbed locations in the joint areas. In this study, based on the DSC concept, RI state, FA state, and disturbance function (D) are defined for characterizing the behavior of rock joint. From the results of this research, it can be stated that DSC model is capable of capturing the physical behavior of jointed rock such as softening and hardening and considering the size of joint and roughness of joint surface.

  • PDF

A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation (DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측)

  • 박인준;김수일;정철민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

Development of Strain-softening Model for Geosynthetic-involved Interface Using Disturbed State Concept (DSC를 이용한 토목섬유가 포함된 경계면의 변형율 연화 모델 개발)

  • Woo, Seo-Min;Park, Jun-Boum;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.223-232
    • /
    • 2003
  • In this study, a constitutive model called the disturbed state concept (DSC) was modified to be applied to the interface shear stress-displacement relationship between geosynthetics. The DSC model is comprised of two reference states, namely the relative intact (RI) and the fully adjusted (FA) state, and one function, namely the disturbance function. This model is a unified approach and can allow for various models as an RI state such as elastic-perfectly plastic model, hierarchical model, and so on. In addition, by using this model, the elastic and plastic displacements can be considered simultaneously. Comparisons between the measured data and predicted results through the parameters determined from four sets of large direct shear tests showed good agreements with each other, especially for the smooth geomembrane-involved interface. Although there are slight differences at peak shear strength for textured geomembrane-involved interface, this model can still be useful to predict the position of displacement at peak strength and the large displacement (or residual) shear strength.

A New Method of Liquefaction Evaluation Based on Disturbed State Concept (교란상태개념에 기초한 새로운 액상화 평가 방법)

  • 박인준;김수일
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.45-55
    • /
    • 1998
  • Although a number of methods have been proposed to predict the liquefaction potential, few methods have been developed by using the characteristic of material's microstructure. In this research, fundamental procedure is proposed for the assessment of liquefaction potential in saturated soils based on the Disturbed Sate Concept(DSC) model which can provide a unified constitutive model for the characterization of entire stress-strain behavior under cyclic loading. From this concept, the value of disturbance at threshold state (Critical Disturbance, $D_C$) in the deforming microstructure provides the basis for initial liquefaction. This method is verified with respect to data from Cyclic Truly Triaxial test for saturated Ottawa sand. Also, the relationship between liquefaction and initial confinig stress is defined using definition of $D_C$. It is believed that the new procedure for identifying liquefaction based on the DSC model can capture the behavior of liquefation, and as a result, it is shown to be on improvement over the available empirical procedures.

  • PDF

Disturbed State Modeling for Dynamic Analysis of Soil-Structure Interface (흙-구조물 경계면의 동역학적해석을 위한 교란상태 모델링)

  • Park, Inn-Joon;Yoo, Ji-Hyeung;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.5-13
    • /
    • 2000
  • In this study, the Disturbed State Concept (DSC) constitutive model is calibrated and modified for steel-sand interface by using the HiS S model for relative intact (Rl) state and the critical state model for the fuBy adjusted (FA) part in the material. The general formulation for implementation is developed. Then, the DSC model with modification for interface is implemented in finite element program based on the generalized Biot's theory. The interface test under one-way monotonic and two-way cyclic loading were numerically simulated using the finite element program modified in this study. The DSC predictions show improved agreement with the observed results from laboratory test. Overall, the computer procedure with the DSC allows relatively improved simulation ofthe soil-structure interaction problems.oblems.

  • PDF