• 제목/요약/키워드: Deep trench

검색결과 68건 처리시간 0.02초

Vertical Profile Silicon Deep Trench Etch와 Loading effect의 최소화에 대한 연구 (The Study for Investigation of the sufficient vertical profile with reducing loading effect for silicon deep trench etching)

  • 김상용;정우양;이근만;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.118-119
    • /
    • 2009
  • This paper presents the feature profile evolution silicon deep trench etching, which is very crucial for the commercial wafer process application. The silicon deep trenches were etched with the SF6 gas & Hbr gas based process recipe. The optimized silicon deep trench process resulted in vertical profiles (87o~90o) with loading effect of < 1%. The process recipes were developed for the silicon deep trench etching applications. This scheme provides vertically profiles without notching of top corner was observed. In this study, the production of SF6 gas based silicon deep trench etch process much more strongly than expected on the basis of Hbr gas trench process that have been investigated by scanning electron microscope (SEM). Based on the test results, it is concluded that the silicon deep trench etching shows the sufficient profile for practical MOS FET silicon deep trench technology process.

  • PDF

Deep-Trench 기술을 적용한 Super Junction MOSFET의 Charge Balance 특성에 관한 연구 (A Study on the Charge Balance Characteristics of Super Junction MOSFET with Deep-Trench Technology)

  • 최종문;허윤영;정헌석;강이구
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.356-361
    • /
    • 2021
  • 파워 소자의 트레이드오프 현상을 최소화하기 위해 제시된 구조가 Super Junction 구조이다. Super Junction은 기존의 많이 사용하던 기본 구조 대비 1/5 정도의 낮은 온 저항(Ron) 특성을 가질 수 있다. Super Junction 구조의 공정 방법으로 Multi-Epi 공정과 Deep-Trench 공정 방법이 있다. Deep-Trench 공정은 실리콘 기판 상면에 깊은 트렌치 공정을 통하여 그안에 불순물이 도핑 되어 있는 폴리실리콘을 매립하여 P-Pillar를 형성 시키는 공정 방법이라 매립하는 과정에서 결함이 형성되기 쉬워서 비교적 어려운 제조 방법으로 알려져 있다. 하지만 비교적 Deep-Trench 공정으로 만들어진 구조가 낮은 온저항과 높은 항복 전압을 형성하여 좋은 효율을 보인다. 본 논문에서는 공정상의 새로운 방법을 제시하고, Charge Balance 이론을 접목시킨 구조를 설계하였다.

Trench MOSFET Technology의 Deep Trench 구조에서 WET Cleaning 영향에 대한 연구 (The Study of WET Cleaning Effect on Deep Trench Structure for Trench MOSFET Technology)

  • 김상용;정우양;이근만;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.88-89
    • /
    • 2009
  • In this paper, we investigated about wet cleaning effect as deep trench formation methods for Power chip devices. Deep trench structure was classified by two methods, PSU (Poly Stick Up) and Non-PSU structure. In this paper, we could remove residue defect during wet. cleaning after deep trench etch process for non-PSU structure device as to change wet cleaning process condition. V-SEM result showed void image at the trench bottom site due to residue defect and residue component was oxide by EDS analysis. In order to find the reason of happening residue defect, we experimented about various process conditions. So, defect source was that oxide film was re-deposited at trench bottom by changed to hydrophobic property at substrate during hard mask removal process. Therefore, in order to removal residue defect, we added in-situ SCI during hard mask removal process, and defect was removed perfectly. And WLR (Wafer Level Reliability) test result was no difference between normal and optimized process condition.

  • PDF

HDP를 이용한 실리콘 단결정 Deep Dry Etching에 관한 특성 (Characterization of Deep Dry Etching of Silicon Single Crystal by HDP)

  • 박우정;김장현;김용탁;백형기;서수정;윤대호
    • 한국세라믹학회지
    • /
    • 제39권6호
    • /
    • pp.570-575
    • /
    • 2002
  • 현재 전기 . 전자 기술의 추세는 소형화를 비롯하여 집적화, 저전력화, 저가격화의 장점을 가진 MEMS(Micro Electro Mechanical Systems) device의 개발에 주력하고 있으며, 이를 위해서는 고종횡비와 높은 식각 속도를 가진 HDP(High Density Plasma) etching 기술 개발이 필수적이라 할 수 있다. 이를 위하여 우리는 Inductively Coupled Plasma(ICP) 장비를 이용하여 각 공정 변수에 의한 실리콘 deep trench식각 반응을 연구하였다. 실험 공정 변수인 platen power, etch/passivation cycle time에서 etching 단계 시간에 따른 변화와 SF$_{6}$:C$_4$F$_{8}$ 가스유량을 변화시켜 연구하였으며 또한 이들의 profile, scallops, 식각 속도, 균일도, 선택비도 관찰하였다.

STI--CMP 공정에서 Torn oxide 결함 해결에 관한 연구 (A Study for the Improvement of Torn Oxide Defects in Shallow Trench Isolation-Chemical Mechanical Polishing (STI-CMP) Process)

  • 서용진;정헌상;김상용;이우선;이강현;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2001
  • STI(shallow trench isolation)-CMP(chemical mechanical polishing) process have been substituted for LOCOS(local oxidation of silicon) process to obtain global planarization in the below sub-0.5㎛ technology. However TI-CMP process, especially TI-CMP with RIE(reactive ion etching) etch back process, has some kinds of defect like nitride residue, torn oxide defect, etc. In this paper, we studied how to reduced torn oxide defects after STI-CMP with RIE etch back processed. Although torn oxide defects which can occur on trench area is not deep and not severe, torn oxide defects on moat area is not deep and not severe, torn oxide defects on moat area is sometimes very deep and makes the yield loss. Thus, we did test on pattern wafers which go through trench process, APECVD process, and RIE etch back process by using an IPEC 472 polisher, IC1000/SUVA4 PAD and KOH base slurry to reduce the number of torn defects and to study what is the origin of torn oxide defects.

  • PDF

500 V급 Unified Trench Gate Power MOSFET 공정 및 제작에 관한 연구 (The Process and Fabrication of 500 V Unified Trench Gate Power MOSFET)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.720-725
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have analyzed trench process, field limit ring process for fabrication of unified trench gate power MOSFET. And we have analyzed electrical characteristics of fabricated unified trench gate power MOSFET. The optimal trench process was based on SF6. After we carried out SEM measurement, we obtained superior trench gate and field limit ring process. And we compared electrical characteristics of planar and trench gate unified power MOSFET after completing device fabrication. As a result, the both of them was obtained 500 V breakdown voltage. However trench gate unified power MOSFET was shown improved Vth and on state voltage drop characteristics than planar gate unified power MOSFET.

Fabrication of Superjunction Trench Gate Power MOSFETs Using BSG-Doped Deep Trench of p-Pillar

  • Kim, Sang Gi;Park, Hoon Soo;Na, Kyoung Il;Yoo, Seong Wook;Won, Jongil;Koo, Jin Gun;Chai, Sang Hoon;Park, Hyung-Moo;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.632-637
    • /
    • 2013
  • In this paper, we propose a superjunction trench gate MOSFET (SJ TGMOSFET) fabricated through a simple p-pillar forming process using deep trench and boron silicate glass doping process technology to reduce the process complexity. Throughout the various boron doping experiments, as well as the process simulations, we optimize the process conditions related with the p-pillar depth, lateral boron doping concentration, and diffusion temperature. Compared with a conventional TGMOSFET, the potential of the SJ TGMOSFET is more uniformly distributed and widely spread in the bulk region of the n-drift layer due to the trenched p-pillar. The measured breakdown voltage of the SJ TGMOSFET is at least 28% more than that of a conventional device.

Deep Trench Filling 기술을 적용한 600 V급 Super Junction Power MOSFET의 최적화 특성에 관한 연구 (A Study on 600 V Super Junction Power MOSFET Optimization and Characterization Using the Deep Trench Filling)

  • 이정훈;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.270-275
    • /
    • 2012
  • Power MOSFET(metal oxide silicon field effect transistor) operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. But on-resistance characteristics depending on the increasing breakdown voltage spikes is a problem. So 600 V planar power MOSFET compare to 1/3 low on-resistance characteristics of super junction MOSFET structure. In this paper design to 600 V planar MOSFET and super junction MOSFET, then improvement of comparative analysis breakdown voltage and resistance characteristics. As a result, super junction MOSFET improve on about 40% on-state voltage drop performance than planar MOSFET.

Silicon trench etching using inductively coupled Cl2/O2 and Cl2/N2 plasmas

  • Kim, Hyeon-Soo;Lee, Young-Jun;Young, Yeom-Geun
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권2호
    • /
    • pp.122-132
    • /
    • 1998
  • Characteristics of inductively coupled Cl2/O2 and Cl2/N2 plasmas and their effects on the formation of submicron deep trench etching of single crystal silicon have been investigated using Langmuir probe, quadrupole mass spectrometer (QMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), Also, when silicon is etched with oxygen added chlorine plasmas, etch products recombined with oxygen such as SiClxOy emerged and Si-O bondings were found on the etched silicon surface. However, when nitrogen is added to chlorine, no etch products recombined with nitrogen nor Si-N bondings were found on the etched silicon surface. When deep silicon trenches were teached, the characteristics of Cl2/O2 and Cl2/N2 plasmas changed the thickness of the sidewall residue (passivation layer) and the etch profile. Vertical deep submicron trench profiles having the aspect ratio higher than 5 could be obtained by controlling the thickness of the residue formed on the trench sidewall using Cl2(O2/N2) plasmas.

  • PDF