• Title/Summary/Keyword: Compact Hausdorff space

Search Result 49, Processing Time 0.025 seconds

TOTALLY CHAIN-TRANSITIVE ATTRACTORS OF GENERIC HOMEOMORPHISMS ARE PERSISTENT

  • GHANE FATEMEH HELEN;FAKHARI ABBAS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.631-638
    • /
    • 2005
  • we prove that, given any compact metric space X, there exists a residual subset R of H(X), the space of all homeomorphisms on X, such that if $\in$ R has a totally chain-transitive attractor A, then any g sufficiently close to f has a totally chain transitive attractor A$\_{g}$ which is convergent to A in the Hausdorff topology.

CONTINUITY OF AN APPROXIMATE JORDAN MAPPING

  • Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.505-509
    • /
    • 2005
  • We show that every $\varepsilon-approximate$ Jordan functional on a Banach algebra A is continuous. From this result we obtain that every $\varepsilon-approximate$ Jordan mapping from A into a continuous function space C(S) is continuous and it's norm less than or equal $1+\varepsilon$ where S is a compact Hausdorff space. This is a generalization of Jarosz's result [3, Proposition 5.5].

SOME REMARKS ON CENTERED-LINDELÖF SPACES

  • Song, Yan-Kui
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.277-280
    • /
    • 2009
  • In this paper, we prove the following two statements: (1) There exists a Hausdorff locally $Lindel{\ddot{o}}f$ centered-$Lindel{\ddot{o}}f$ space that is not star-$Lindel{\ddot{o}}f$. (2) There exists a $T_1$ locally compact centered-$Lindel{\ddot{o}}f$ space that is not star-$Lindel{\ddot{o}}f$. The two statements give a partial answer to Bonanzinga and Matveev [2, Question 1].

A NOTE ON THE RANK OF THE FLOW

  • Joseph Auslander;Kim, Young-Key
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.411-414
    • /
    • 1994
  • In this paper a flow will be a pair (X, T) where X is a compact Hausdorff space, and T is a homeomorphism of X onto X. We will usually but not always assume that X is a metric space. We sometimes suppress the homeomorphism T notationally, and just denote a flow by X. General references for the preliminary dynamical notations discussed in this section are [5] and [3]. (The latter should be used with care, since transformations are written on the right there.)(omitted)

  • PDF

ON ARCWISE CONNECTEDNESS IM KLEINEN IN HYPERSPACES

  • Baik, Bong Shin;Rhee, Choon Jai
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • Let X be a space and $2^X$(C(X);K(X);$C_K$(X)) denote the hyperspace of nonempty closed subsets(connected closed subsets, compact subsets, subcontinua) of X with the Vietoris topology. We investigate the relationships between the space X and its hyperspaces concerning the properties of connectedness im kleinen. We obtained the following : Let X be a locally compact Hausdorff space. Let $x{\in}X$. Then the following statements are equivalent: (1) X is connected im kleinen at $x$. (2) $2^X$ is arcwise connected im kleinen at {$x$}. (3) K(X) is arcwise connected im kleinen at {$x$}. (4) $C_K$(X) is arcwise connected im kleinen at {$x$}. (5) C(X) is arcwise connected im kleinen at {$x$}.

ISOMETRIES WITH SMALL BOUND ON $C^1$(X) SPACES

  • Jun, Kil-Woung;Lee, Yang-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.85-91
    • /
    • 1995
  • For a locally compact Hausdorff space, we denote by $C_0(X)$ the Banach space of all continuous complex valued functions defined on X which vanish at infinity, equipped with the usual sup norm. In case X is compact, we write C(X) instead of $C_0(X)$. A well-known Banach-Stone theorem states that the existence of an isometry between the function spaces $C_0(X)$ and $C_0(Y)$ implies X and Y are homemorphic. D. Amir [1] and M. Cambern [2] independently generalized this theorem by proving that if $C_0(X)$ and $C_0(Y)$ are isomorphic under an isomorphism T satisfying $\left\$\mid$ T \right\$\mid$ \left\$\mid$ T^1 \right\$\mid$ < 2$, then X and Y must also be homeomorphic.

  • PDF

A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.803-829
    • /
    • 1998
  • We give general fixed point theorems for compact multimaps in the "better" admissible class $B^{K}$ defined on admissible convex subsets (in the sense of Klee) of a topological vector space not necessarily locally convex. Those theorems are used to obtain results for $\Phi$-condensing maps. Our new theorems subsume more than seventy known or possible particular forms, and generalize them in terms of the involving spaces and the multimaps as well. Further topics closely related to our new theorems are discussed and some related problems are given in the last section.n.

  • PDF

ULTRASEPARABILITY OF CERTAIN FUNCTION ALGEBRAS

  • Hwang, Sun-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.299-302
    • /
    • 1994
  • Throughout this paper, let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$ /(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued (resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.(omitted)

  • PDF

ON UNIFORMLY ULTRASEPARATING FAMILY OF FUNCTION ALGEBRAS

  • Hwang, Sunwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.125-134
    • /
    • 1993
  • Let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued(resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.s.

  • PDF