ON UNIFORMLY ULTRASEPARATING FAMILY OF FUNCTION ALGEBRAS

SUNWOOK HWANG

1. Introduction

Let X be a compact Hausdorff space, and let C(X) (resp. $C_{\mathbf{R}}(X)$) be the complex (resp. real) Banach algebra of all continuous complex-valued (resp. real-valued) functions on X with the pointwise operations and the supremum norm $\| \ \|_X$. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.

Let E be a (real or complex) normed linear space with norm $\| \|_E$. Denote by $\tilde{E} = \ell^{\infty}(N, E)$ the space of all bounded functions from the set $N = \{1, 2, 3, ...\}$ to E normed as follows:

$$\|\tilde{f}\|_{\tilde{E}} \equiv \sup\{\|f_n\|_E : n \in \mathbf{N}\} < \infty$$

for a sequence $\tilde{f} = \{f_n\}_{n=1}^{\infty}$ in \tilde{E} .

Denote by $X = \beta(\mathbf{N} \times X)$ the Stone-Čech compactification of the product space $\mathbf{N} \times X$. Since every sequence $\{f_n\}_{n=1}^{\infty}$ in $\ell^{\infty}(\mathbf{N}, C(X))$ can be considered as a function from $\mathbf{N} \times X$ to \mathbf{C} , it has a unique continuous extension to a function in $C(\tilde{X})$. So, we have $\ell^{\infty}(\mathbf{N}, C(X)) = C(\tilde{X})$.

DEFINITION 1.1 ([2]). Let E be a (real or complex) normed linear space continuously injected in C(X). We say that E is ultraseparating on X if \tilde{E} separates the points of \tilde{X} .

Let A be a Banach function algebra on X. Denote by ball A the set of all functions in A with $||f||_A \leq 1$.

Received April 30, 1992. Revised September 14, 1992.

PROPOSITION 1.2 ([1]). Let A be a Banach function algebra on X. Then the following are equivalent:

- (1) A is ultraseparating on X.
- (2) There exist a $\delta > 0$ and an $n \in \mathbb{N}$ such that for any pair of non-empty disjoint closed subsets E and F of X, there exist $u_1, \ldots, u_n; v_1, \ldots, v_n \in \text{ball } A$ such that

$$\sum_{i=1}^{n}(|u_i|-|v_i|)\geq \delta \quad \text{on } E,$$

$$\sum_{i=1}^{n} (|u_i| - |v_i|) \le -\delta \quad \text{on } F.$$

Notice that if A is ultraseparating for some $\delta > 0$ and $n \in \mathbb{N}$, then A is ultraseparating for any positive integer $m \geq n$ with same $\delta > 0$. So, we may assume that $\delta \geq 1/n$, and hence we can redefine ultraseparability of a Banach function algebra as follows:

DEFINITION 1.3. A Banach function algebra A on X is said to be n-ultraseparating on X for some $n \in \mathbb{N}$ if for any pair of non-empty disjoint closed subsets E and F of X, there exist $u_1, \ldots, u_n; v_1, \ldots, v_n \in \text{ball } A$ such that

$$\sum_{i=1}^{n}(|u_i|-|v_i|)\geq 1/n\quad\text{on }E,$$

$$\sum_{i=1}^{n} (|u_i| - |v_i|) \le -1/n \quad \text{on} \ \ F.$$

DEFINITION 1.4. Let Γ be an index set, and let A_{γ} be an n_{γ} -ultraseparating Banach function algebras on X_{γ} for $\gamma \in \Gamma$. The family $\{A_{\gamma} : \gamma \in \Gamma\}$ is said to be uniformly ultraseparating if $\sup\{n_{\gamma} : \gamma \in \Gamma\} < \infty$.

Now, let A_{γ} be a Banach function algebra on X_{γ} for each $\gamma \in \Gamma$, and let $X = \bigcup_{\gamma \in \Gamma} (\{\gamma\} \times X_{\gamma})$. Define an indexed family $\tilde{f} = \{f_{\gamma}\}_{{\gamma} \in \Gamma}$

of functions $f_{\gamma} \in A_{\gamma}$ by

$$\tilde{f}(\gamma, x_{\gamma}) = f_{\gamma}(x_{\gamma}) \text{ for } (\gamma, x_{\gamma}) \in \{\gamma\} \times X_{\gamma}.$$

Let \tilde{A} be the set of all $\tilde{f} = \{f_{\gamma}\}_{\gamma \in \Gamma}$ such that $\sup\{\|f_{\gamma}\|_{A_{\gamma}} : \gamma \in \Gamma\} < \infty$. Then \tilde{A} is a Banach algebra (with the norm $\|\tilde{f}\|_{\tilde{A}} = \sup\{\|f_{\gamma}\|_{A_{\gamma}} : \gamma \in \Gamma\}$) lying in $C(\beta X)$ which contains the constants. Indeed, $\|\tilde{f}\|_{\tilde{A}} \geq \|\tilde{f}\|_{\beta X}$ because $\|\tilde{f}\|_{\beta X} = \sup\{\|f_{\gamma}\|_{X_{\gamma}} : \gamma \in \Gamma\}$.

In this paper, we will study point separability and ultraseparability of the algebra \tilde{A} via uniform ultraseparability of the family $\{A_{\gamma}: \gamma \in \Gamma\}$.

2. Main Results

LEMMA 2.1 ([3]). Let A be a real Banach function algebra on X. Then the space of all linear combinations of |f| for $f \in ballA$ is uniformly dense in $C_{\mathbf{R}}(X)$.

THEOREM 2.2. Let A_{γ} be a Banach function algebra on X_{γ} for each $\gamma \in \Gamma$. Then the following are equivalent:

- (1) A separates the points of βX .
- (2) There exists a finite subset Γ_0 of Γ such that the family $\{A_{\gamma}: \gamma \in \Gamma \Gamma_0\}$ is uniformly ultraseparating.

Proof. (2) \Longrightarrow (1): Let Γ_o be a finite subset of Γ such that the family $\{A_{\gamma} : \gamma \in \Gamma - \Gamma_o\}$ is uniformly ultraseparating. Let p and q be distinct two points of βX . Put

$$Y_1 = \bigcup_{\gamma \in \Gamma_0} (\{\gamma\} \times X_{\gamma})$$
 and $Y_2 = X - Y_1$.

Then $\beta X = \beta(Y_1 \cup Y_2) = \beta Y_1 \cup \beta Y_2 = Y_1 \cup \beta Y_2$ since Γ_0 is a finite set. Case 1. p and $q \in Y_1$:

If $p, q \in \{\gamma_0\} \times X_{\gamma_0}$ for some $\gamma_0 \in \Gamma_0$, then $p = (\gamma_0, x)$, $q = (\gamma_0, y)$ for some distinct $x, y \in X_{\gamma_0}$. Since A_{γ_0} separates the points of X_{γ_0} , there

exists $g \in A_{\gamma_0}$ such that $g(x) \neq g(y)$. Choose any $\tilde{f} = \{f_{\gamma}\}_{{\gamma} \in \Gamma} \in \tilde{A}$ such that $f_{\gamma_0} = g$. Then $\tilde{f}|_{\{\gamma_0\} \times X_{\gamma_0}} = f_{\gamma_0}$, and

$$\tilde{f}(p) = f_{\gamma_0}(x) \neq f_{\gamma_0}(y) = \tilde{f}(q).$$

Next, suppose that $p = (\gamma_0, x_{\gamma_0}) \in \{\gamma_0\} \times X_{\gamma_0}, q = (\gamma_1, x_{\gamma_1}) \in \{\gamma_1\} \times X_{\gamma_1}$ for some distinct $\gamma_0, \gamma_1 \in \Gamma_0$. Define for $\gamma \in \Gamma$,

$$f_{\gamma} = \begin{cases} 0 & \text{if} \quad \gamma = \gamma_0, \\ 1 & \text{if} \quad \gamma \neq \gamma_0. \end{cases}$$

Then $\tilde{f} = \{f_{\gamma}\}_{{\gamma} \in \Gamma} \in \tilde{A}$, and

$$\tilde{f}(p) = f_{\gamma_0}(x_{\gamma_0}) = 0 \neq 1 = f_{\gamma_1}(x_{\gamma_1}) = \tilde{f}(q).$$

Case 2. $p \in Y_1, q \in \beta Y_2$ (or $p \in \beta Y_2, q \in Y_1$):

Assume that $p \in Y_1, q \in \beta Y_2$. Then $p = (\gamma_0, x_0)$ for some $\gamma_0 \in \Gamma_0$ and $x_0 \in X_{\gamma_0}$. Define

$$f_{\gamma} = \begin{cases} 0 & \text{if} \quad \gamma \in \Gamma - \Gamma_0, \\ 1 & \text{if} \quad \gamma \in \Gamma_0, \end{cases}$$

and let $\tilde{f} = \{f_{\gamma}\}_{{\gamma} \in \Gamma}$. Then $\tilde{f} \in \tilde{A}$, $\tilde{f}|_{\beta Y_2} = 0$, and

$$\tilde{f}(p) = f_{\gamma_0}(x_0) = 1 \neq 0 = \tilde{f}(q).$$

Case 3. $p, q \in \beta Y_2$:

It suffices to show that $\tilde{A}|_{\beta Y_2}$ separates the points of βY_2 . Indeed, if then, we can choose $\tilde{g} = \{g_{\gamma}\}_{{\gamma} \in \Gamma - \Gamma_0} \in \tilde{A}|_{\beta Y_2}$ such that $\tilde{g}(p) \neq \tilde{g}(q)$. Define

$$f_{\gamma} = \begin{cases} g_{\gamma} & \text{if} \quad \gamma \in \Gamma - \Gamma_{0}, \\ 0 & \text{if} \quad \gamma \in \Gamma_{0}, \end{cases}$$

and let $\tilde{f} = \{f_{\gamma}\}_{{\gamma} \in \Gamma}$. Then $\tilde{f} \in \tilde{A}$ and $\tilde{f}|_{\beta Y_2} = \tilde{g}$. Hence, we have

$$\tilde{f}(p) = \tilde{g}(p) \neq \tilde{g}(q) = \tilde{f}(q).$$

On uniformly ultraseparating family of function algebras

Now, to prove that $\tilde{A}|_{\beta Y_2}$ separates the points of βY_2 , let p and q be distinct two points of βY_2 , and let U and V be neighborhoods of p and q, respectively in βY_2 having disjoint closures. Put

$$U^{\gamma} = \overline{(\{\gamma\} \times X_{\gamma}) \cap U}, \quad V^{\gamma} = \overline{(\{\gamma\} \times X_{\gamma}) \cap V}$$

for $\gamma \in \Gamma - \Gamma_0$. (Here, \overline{S} is the closure of S in βY_2 .) Then U^{γ} and V^{γ} are disjoint closed sets in $\{\gamma\} \times X_{\gamma}$ which is homeomorphic to X_{γ} for each $\gamma \in \Gamma - \Gamma_0$. Since $\{A_{\gamma} : \gamma \in \Gamma - \Gamma_0\}$ is uniformly ultraseparating, we can choose $n \in \mathbb{N}$ such that for each $\gamma \in \Gamma - \Gamma_0$, there exist $u_1^{\gamma}, \ldots, u_n^{\gamma}; v_1^{\gamma}, \ldots, v_n^{\gamma} \in \text{ball} A_{\gamma}$ such that

$$\begin{split} &\sum_{i=1}^n (|u_i^{\gamma}| - |v_i^{\gamma}|) \geq 1/n \quad \text{on} \quad U^{\gamma}, \\ &\sum_{i=1}^n (|u_i^{\gamma}| - |v_i^{\gamma}|) \leq -1/n \quad \text{on} \quad V^{\gamma}. \end{split}$$

Put $\tilde{u}_i = \{u_i^{\gamma}\}_{\gamma \in \Gamma - \Gamma_0}, \tilde{v}_i = \{v_i^{\gamma}\}_{\gamma \in \Gamma - \Gamma_0} \text{ for } i = 1, \dots, n. \text{ Then } \tilde{u}_i, \tilde{v}_i \in \text{ball}(\tilde{A}|_{\beta Y_2}) \text{ for } i = 1, \dots, n, \text{ and}$

$$\left\{ \begin{array}{ll} \displaystyle \sum_{i=1}^n (|\tilde{u_i}| - |\tilde{v_i}|) \geq 1/n & \text{on} \quad \overline{U}, \\ \\ \displaystyle \sum_{i=1}^n (|\tilde{u_i}| - |\tilde{v_i}|) \leq -1/n & \text{en} \quad \overline{V} \end{array} \right.$$

because $X \cap U$ and $X \cap V$ are dense in \overline{U} and \overline{V} , respectively. Now, if $\tilde{f}(p) = \tilde{f}(q)$ for all $\tilde{f} \in \tilde{A}|_{\beta Y_2}$, then (*) is impossible. Therefore, $\tilde{A}|_{\beta Y_2}$ separates the points of βY_2 .

(1) \Longrightarrow (2): Suppose that \tilde{A} separates the points of βX , and suppose that there is no finite subset of Γ_0 of Γ such that $\{A_{\gamma}: \gamma \in \Gamma - \Gamma_0\}$ is uniformly ultraseparating. For each $n \in \mathbb{N}$, put

$$\Gamma_n = \{ \gamma \in \Gamma : A_{\gamma} \text{ is not } n\text{-ultraseparating} \}.$$

Then Γ_n must be an infinite set for each $n \in \mathbb{N}$, and $\Gamma_1 \supset \Gamma_2 \supset \ldots$. Take $\gamma_1, \gamma_2, \cdots \in \Gamma$ distinct so that $\gamma_n \in \Gamma_n$. Then for each $n \in \mathbb{N}$, we can choose disjoint closed sets E_n and F_n in X_{γ_n} such that for any $f_1, \ldots, f_n; g_1, \ldots, g_n \in \text{ball} A_{\gamma_n}$, either

$$\sum_{i=1}^{n} (|f_i| - |g_i|) < 1/n \quad \text{on} \quad E_n$$

or

$$\sum_{i=1}^{n} (|f_i| - |g_i|) > -1/n \quad \text{on} \quad F_n.$$

Let $E = \overline{\bigcup_{n=1}^{\infty}(\{\gamma_n\} \times E_n)}$ and $F = \overline{\bigcup_{n=1}^{\infty}(\{\gamma_n\} \times F_n)}$. (Here, \overline{S} is the closure of S in βX .) Then E and F are disjoint closed sets in βX . Let \tilde{h} be a real-valued continuous function from βX onto [-1,1] such that $\tilde{h}|_E = 1$, $\tilde{h}|_F = -1$. Since \tilde{A} separates the point of βX , so does Re \tilde{A} . Hence by the above Lemma 2.1, there are a positive integer N and $\tilde{u}_i = \{u_i^{\gamma}\}_{{\gamma} \in \Gamma}, \tilde{v}_i = \{v_i^{\gamma}\}_{{\gamma} \in \Gamma} \in \tilde{A}$ such that

$$\left|\sum_{i=1}^{N}(|\tilde{u_i}|-|\tilde{v_i}|)-\tilde{h}\right|\leq 1/2 \quad \text{on} \quad \beta X.$$

So, for any $n \in \mathbb{N}$, we have

$$\left| \sum_{i=1}^{N} (|u_i^{\gamma_n}| - |v_i^{\gamma_n}|) - 1 \right| \le 1/2 \text{ on } E_n$$

and

$$\left| \sum_{i=1}^{N} (|u_i^{\gamma_n}| - |v_i^{\gamma_n}|) + 1 \right| \le 1/2$$
 on F_n .

On uniformly ultraseparating family of function algebras

Take $c = \max_{1 \le i \le N} \{ \|\tilde{u}_i\|, \|\tilde{v}_i\| \}$. Then for $n \in \mathbb{N}$ with $1/2c \ge 1/n$, we have

$$\sum_{i=1}^{N} (|f_i^{\gamma_n}| - |g_i^{\gamma_n}|) \ge 1/n \quad \text{on} \quad E_n$$

and

$$\sum_{i=1}^{N}(|f_{i}^{\gamma_{n}}|-|g_{i}^{\gamma_{n}}|) \leq -1/n \quad \text{on} \quad F_{n},$$

where $f_i^{\gamma} = (1/c)u_i^{\gamma}$ and $g_i^{\gamma} = (1/c)v_i^{\gamma}$ for $\gamma \in \Gamma$. But this is impossible. \square

THEOREM 2.3. Let A_{γ} be a Banach function algebra on X_{γ} for each $\gamma \in \Gamma$. Then the following are equivalent:

- (1) The family $\{A_{\gamma} : \gamma \in \Gamma\}$ is uniformly ultraseparating.
- (2) \tilde{A} is an ultraseparating Banach function algebra on βX .

Proof. (1) \Longrightarrow (2): Suppose that $\{A_{\gamma} : \gamma \in \Gamma\}$ is uniformly ultraseparating. Then there exists $n \in \mathbb{N}$ such that each A_{γ} is nultraseparating on X_{γ} . Let E and F be disjoint closed subsets of βX with non-empty interior, and put

$$E^{\gamma} = (\{\gamma\} \times X_{\gamma}) \cap E, \quad F^{\gamma} = (\{\gamma\} \times X_{\gamma}) \cap F$$

for each $\gamma \in \Gamma$. Then E^{γ} and F^{γ} are non-empty disjoint closed sets in $\{\gamma\} \times X_{\gamma}$ for each $\gamma \in \Gamma$. So, for each $\gamma \in \Gamma$, we can choose $u_1^{\gamma}, \ldots, u_n^{\gamma}; v_1^{\gamma}, \ldots, v_n^{\gamma} \in \text{ball} A_{\gamma}$ such that

$$\sum_{i=1}^{n} (|u_i^{\gamma}| - |v_i^{\gamma}|) \ge 1/n \quad \text{on} \quad E^{\gamma},$$

$$\sum_{i=1}^{n} (|u_i^{\gamma}| - |v_i^{\gamma}|) \le -1/n \quad \text{on} \quad F^{\gamma}.$$

Take $\tilde{u_i} = \{u_i^{\gamma}\}_{{\gamma} \in \Gamma}, \tilde{v_i} = \{v_i^{\gamma}\}_{{\gamma} \in \Gamma} \text{ for } i = 1, \dots, n. \text{ Then } \tilde{u_i}, \tilde{v_i} \in \text{ball} \tilde{A} \text{ for } i = 1, \dots, n, \text{ and }$

$$\sum_{i=1}^{n} (|\tilde{u_i}| - |\tilde{v_i}|) \ge 1/n \quad \text{on} \quad E,$$

$$\sum_{i=1}^{n} (|\tilde{u_i}| - |\tilde{v_i}|) \le -1/n \quad \text{on} \quad F.$$

Therefore, \tilde{A} is n-ultraseparating on βX .

(2) \Longrightarrow (1): Suppose \tilde{A} is n-ultraseparating on βX , and fix $\gamma_0 \in \Gamma_0$. We will show that $A_{\gamma_0} = \tilde{A}|_{\{\gamma_0\} \times X_{\gamma_0}}$ is n-ultraseparating on X_{γ_0} .

Let E and F be disjoint closed subsets of X_{γ_0} . Then $\{\gamma_0\} \times E$ and $\{\gamma_0\} \times F$ are disjoint closed sets in βX . So, there exist $\tilde{u_1}, \ldots, \tilde{u_n}; \tilde{v_1}, \ldots, \tilde{v_n} \in \text{ball} \tilde{A} \text{ such that}$

$$\sum_{i=1}^{n} (|\tilde{u_i}| - |\tilde{v_i}|) \ge 1/n \quad \text{on} \quad \{\gamma_0\} \times E,$$

$$\sum_{i=1}^{n} (|\tilde{u_i}| - |\tilde{v_i}|) \le -1/n \quad \text{on} \quad \{\gamma_0\} \times F.$$

Denote $\tilde{u_i} = \{u_i^{\gamma}\}_{\gamma \in \Gamma}$, $\tilde{v_i} = \{v_i^{\gamma}\}_{\gamma \in \Gamma}$ for $u_i^{\gamma}, v_i^{\gamma} \in A_{\gamma}, \gamma \in \Gamma$, $i = 1, \ldots, n$. Then $u_i^{\gamma_0}$ and $v_i^{\gamma_0} \in \text{ball} A_{\gamma_0}$ for $i = 1, \ldots, n$, and

$$\sum_{i=1}^{n} (|u_i^{\gamma_0}| - |v_i^{\gamma_0}|) \ge 1/n \quad \text{on} \quad E,$$

$$\sum_{i=1}^{n} (|u_i^{\gamma_0}| - |v_i^{\gamma_0}|) \le -1/n \quad \text{on} \quad F.$$

Thus, A_{γ_0} is n-ultraseparating on X_{γ_0} , and therefore $\{A_{\gamma}: \gamma \in \Gamma\}$ is uniformly ultraseparating. \square

Let B be a Banach function algebra on a compact Hausdorff space Y. In the notations of the above theorem, take $\Gamma = \mathbb{N}$, $A_{\gamma} = B$, and $X_{\gamma} = Y$ for every $\gamma \in \Gamma$. Then $X = \bigcup_{n \in \mathbb{N}} (\{n\} \times X_n) = \mathbb{N} \times Y$, so $\beta X = \beta(\mathbb{N} \times Y) = \tilde{Y}$ and $\tilde{A} = \ell^{\infty}(\mathbb{N}, B) = \tilde{B}$. Thus, we have

COROLLARY 2.4 ([1]). Let B be a Banach function algebra on a compact Hausdorff space Y. Then the following are equivalent:

- (1) B is ultraseparating on Y.
- (2) \tilde{B} is ultraseparating on \tilde{Y} .

EXAMPLE 2.5. Let X = [0, 1]. For each $n \in \mathbb{N}$, define

$$||f||_n = ||f||_X + n|f(0)|$$
 for $f \in C(X)$,

where $\| \|_X$ is the supremum norm. Then C(X) equipped with the norm $\| \|_n$ is a Banach function algebra on X, which we denote by A_n for $n \in \mathbb{N}$. Since $\| f \|_X \leq \| f \|_n \leq (n+1) \| f \|_X$ for $f \in C(X)$ and since the uniform algebra C(X) is 1-ultraseparating, A_n is (n+1)-ultraseparating for each $n \in \mathbb{N}$.

Let \tilde{A} be the Banach algebra so defined as in Definition 1.4, and let $C(\tilde{X}) = \ell^{\infty}(N, C(X))$ with the uniform norm on $\tilde{X} = \beta(N \times X)$. Then, we have

$$\tilde{f} = \{f_n\}_{n=1}^{\infty} \in \tilde{A} \text{ iff } \tilde{f} \in C(\tilde{X}) \text{ and } \sup_{n \in \mathbb{N}} n|f_n(0)| < \infty.$$

Hence \tilde{A} is a proper subalgebra of $C(\tilde{X})$, and therefore by Theorem 2.3 the family $\{A_n : n \in \mathbb{N}\}$ is not uniformly ultraseparating. Actually, we can show this fact directly as follows:

Let k be any positive integer less than $\sqrt{n+1}$. Then $|f(0)| \leq 1/(n+1)$ for $f \in \text{ball} A_n$. Take $E = \{0\}$, $F = \{1\}$. If $f_1, \ldots, f_k; g_1, \ldots, g_k \in \text{ball} A_n$, then we have

$$\sum_{i=1}^{k}(|f_i(0)|-|g_i(0)|) \leq \sum_{i=1}^{k}|f_i(0)| \leq \frac{k}{n+1} < \frac{\sqrt{n+1}}{n+1} = \frac{1}{\sqrt{n+1}} < \frac{1}{k}.$$

Thus, A_n is not k-ultraseparating, and therefore A_n is k_n -ultraseparating for a positive integer $k_n \geq \sqrt{n+1}$ for each $n \in \mathbb{N}$. This implies that the family $\{A_n : n \in \mathbb{N}\}$ is not uniformly ultraseparating because $k_n \to \infty$ as $n \to \infty$.

REMARK. Let $A_{\gamma} = C(X_{\gamma})$ with the uniform norm on X_{γ} for each $\gamma \in \Gamma$. Then \tilde{A} is an ultraseparating uniform algebra on βX by Theorem 2.3 and by the fact that $\|\tilde{f}\|_{\tilde{A}} = \|\tilde{f}\|_{\beta X}$ for $\tilde{f} \in \tilde{A}$. Since each A_{γ} is self-adjoint, so is \tilde{A} , and therefore $\tilde{A} = C(\beta X)$ by the Stone-Weierstrass Theorem.

But this is not true if $A_{\gamma} = C(X_{\gamma})$ is equipped with any other norm than the supremum norm as in the above example.

References

- B. Batikjan and E. Gorin, Ultraseparating algebras for continuous functions, Vestik Moskov. Univ. Ser. I Mat. Meh. 31 (1976), 15-20; English Transl. in Moscow Univ. Math. Bull. 31 (1976), 71-75.
- 2. A. Bernard, Espaces des parties réelles des éléments d'une algèbre de Banach de fonctions, J. Functional Analysis 10 (1972), 387-409.
- O. Hatori, Range transformations on a Banach function algebra II, Pacific J. Math. 138 (1989), 89-118.

Department of Mathematics, Soong Sil University, Seoul 156-743, Korea