DOI QR코드

DOI QR Code

ON ARCWISE CONNECTEDNESS IM KLEINEN IN HYPERSPACES

  • Received : 2012.12.19
  • Accepted : 2013.01.21
  • Published : 2013.02.28

Abstract

Let X be a space and $2^X$(C(X);K(X);$C_K$(X)) denote the hyperspace of nonempty closed subsets(connected closed subsets, compact subsets, subcontinua) of X with the Vietoris topology. We investigate the relationships between the space X and its hyperspaces concerning the properties of connectedness im kleinen. We obtained the following : Let X be a locally compact Hausdorff space. Let $x{\in}X$. Then the following statements are equivalent: (1) X is connected im kleinen at $x$. (2) $2^X$ is arcwise connected im kleinen at {$x$}. (3) K(X) is arcwise connected im kleinen at {$x$}. (4) $C_K$(X) is arcwise connected im kleinen at {$x$}. (5) C(X) is arcwise connected im kleinen at {$x$}.

Keywords

References

  1. Charles Dorsett: Local connectedness, connectedness im Kleinen and other properties of hyperspaces of $R_0$ Spaces. Math. Vesnik 3 (1979), 113-123.
  2. Jack T. Goodykoontz Jr.: Connectedness im Kleinen and local connectedness in $2^X$ and C(X). Pacific J. of Math. 53 (1974), 387-397. https://doi.org/10.2140/pjm.1974.53.387
  3. Jack T. Goodykoontz Jr. & C.J. Rhee: Local properties of hyperspaces. Proceedings 23 (1998), 183-200.
  4. M.M. McWater: Arcs, Semigroups, and Hyperspaces. Canadian J. Math. 20 (1968), 1207-1210. https://doi.org/10.4153/CJM-1968-115-3
  5. E. Michael: Topology on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182. https://doi.org/10.1090/S0002-9947-1951-0042109-4
  6. A.K. Misra: C-supersets, piecewise order-arcs and local arcwise connectedness in hyperspaces. Q & A in General Topology 8 (1990), 467-485.
  7. L. Vietoris: Bereiche Zweiter Ordung. Monatshefte fur Mathematik und Physik 32 (1922), 253-280.
  8. L. Vietoris: Kontinua Zeiter Ordung. Monatshefte fur Mathematik und Physik 33 (1923), 49-62. https://doi.org/10.1007/BF01705590