• Title/Summary/Keyword: Clock and data recovery circuit

Search Result 68, Processing Time 0.021 seconds

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

Giga-bps CMOS Clock and Data Recovery Circuit with a novel Adaptive Phase Detector (새로운 구조의 적응형 위상 검출기를 갖는 Gbps급 CMOS 클럭/데이타 복원 회로)

  • 이재욱;이천오;최우영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.987-992
    • /
    • 2002
  • In this paper, a new clock and data recovery circuit is proposed for the application of data communication systems requiring ㎓-range clock signals. The circuit is suitable for recovering NRZ data which is widely used for high speed data transmission in ㎓ ranges. The high frequency jitter is one of major performance-limiting factors in PLL, particularly when NRZ data patterns are used. A novel phase detector is able to suppress this noise, and stable clock generation is achieved. Futhermore, the phase detector has an adaptive delay cell removing the dead zone problem and has the optimal characteristics for fast locking. The proposed circuit has a convenience structure that can be easily extended to multi-channels. The circuit is designed based on CMOS 0.25㎛ fabrication process and verified by measurement result.

A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO

  • Seo, Jin-Cheol;Moon, Yong-Hwan;Seo, Joon-Hyup;Jang, Jae-Young;An, Taek-Joon;Kang, Jin-Ku
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 2013
  • In this paper, a clock and data recovery (CDR) circuit that supports triple data rates of 1.62, 2.7, and 5.4 Gbps for DisplayPort 1.2 standard is described. The proposed CDR circuit covers three different operating frequencies with a single VCO switching the operating frequency by the 3-bit digital code. The prototype chip has been designed and verified using a 65 nm CMOS technology. The recovered-clock jitter with the data rates of 1.62/2.7/5.4 Gbps at $2^{31}$-1 PRBS is measured to 7/5.6/4.7 $ps_{rms}$, respectively, while consuming 11 mW from a 1.2 V supply.

Design of a 10Gbps CMOS Clock and Data Recovery Circuit (10Gbps CMOS 클럭/데이터 복원 회로 설계)

  • Cha, Chung-Hyeon;Sim, Sang-Mi;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.459-460
    • /
    • 2008
  • In this paper, a 10Gbps clock and data recovery circuit is designed in $0.18{\mu}m$ CMOS technology. The circuit incorporates a multiphase LC oscillator, a quarter-rate Bang-Bang phase detector, a charge pump and a second order loop filter. The simulation results show that the designed circuit has a peak-to-peak clock jitter of 4.2ps and a peak-to-peak recovered data jitter of 8ps while consuming about 80mW from a 1.8V supply.

  • PDF

Implementation of the 155.52 MHz Clock Recovery Receiver for the Fiber Optic Modules (광통신 모듈용 155.52 MHz 클럭복원 리시버의 구현)

  • 이길재;채상훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12C
    • /
    • pp.249-254
    • /
    • 2001
  • A receiver ASIC for fiber optic modules of STM-1 optical communication has been fabricated with 0.65 $\mu\textrm{m}$ CMOS technology. The ASIC has a limit amplifier circuit for the 155.52 Mbps data reshaping, and a clock extraction circuit for the 155.52 MHz clock recovery. The ASIC has an acquisition aid and LOS monitoring circuit for properly operation with near 155.52 MHz clock frequency in case of the data loss due to transmission line open or data transfer fail. Measured results show that the circuit reshapes data from 5 mV to 1 V wide range of input voltage condition, add it recovers system clock with stable on any condition.

  • PDF

Design of a 10Gbps CMOS Clock and Data Recovery Circuit (10Gbps CMOS 클록/데이터 복원회로 설계)

  • Cha, C.H.;Shim, H.C.;Jeon, S.H.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.197-198
    • /
    • 2007
  • In this paper, a 10Gbps Clock and Data Recovery circuit is designed in $0.18{\mu}m$ CMOS Technology. The circuit incorporates a multiphase LC oscillator, a quarter-rate Bang-Bang phase detector, a Charge Pump and a second order loop filter. The simulation results show that the designed circuit has a peak-to-peak clock jitter of 4.1ps and a peak-to-peak recovered data jitter of 8ps while consuming about 44mW from a 1.8V supply.

  • PDF

Design of A Clock-and-Data Recovery Circuit for Detection and Reconstruction of Broadband Multi-rate Optical Signals (다중속도의 광신호 추출 및 클락-데이터 복원회로 설계)

  • Kim, Kang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Due to explosive increase of internet usage, broadband data transmission using optical fibers is broadly used. In order to decrease distortion during long distance transmission, the optical signal need to be restored, typically, by converting the optical signal into the electrical signal. The optical signal is converted into the electrical signal using a photo-diode, and then a clock-and-recovery (CDR) circuit is used to recover the clock and retime the data. In this study, a clock-and-data recovery circuit has been designed using a standard 1.8 V $0.18\;{\mu}m$ CMOS process. With this CDR circuit, the improved phase detector and charge pump have been utilized. Also, by using a ring oscillator, the CDR circuit can recover clock and data from broadband multi-rate data ranging between 750 Mb/s and 2.85 Gb/s.

A 2.7Gbps & 1.62Gbps Dual-Mode Clock and Data Recovery for DisplayPort in $0.18{\mu}m$ CMOS

  • Lee, Seung-Won;Kim, Tae-Ho;Lee, Suk-Won;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • This paper describes a clock and data recovery (CDR) circuit that supports dual data rates of 2.7Gbps and 1.62Gbps for DisplayPort standard. The proposed CDR has a dual mode voltage-controlled oscillator (VCO) that changes the operating frequency with a "Mode" switch control. The chip has been implemented using $0.18{\mu}m$ CMOS process. Measured results show the circuit exhibits peak-to-peak jitters of 37ps(@2.7Gbps) and 27ps(@1.62Gbps) in the recovered data. The power dissipation is 80mW at 2.7Gbps rate from a 1.8V supply.

A COMOS Oversampling Data Recovery Circuit With the Vernier Delay Generation Technique

  • Jun-Young Park
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1590-1597
    • /
    • 2000
  • This paper describes a CMOS data recovery circuit using oversampling technique. Digital oversampling is done using a delay locked loop circuit locked to multiple clock periods. The delay locked loop circuit generates the vernier delay resolution less than the gate delay of the delay chain. The transition and non-transition counting algorithm for 4x oversampling was implemented for data recovery and verified through FPGA. The chip has been fabricated with 0.6um CMOS technology and measured results are presented.

  • PDF

Design of a Clock and Data Recovery Circuit Using the Multi-point Phase Detector (다중점 위상검출기를 이용한 클럭 및 데이터 복원회로 설계)

  • Yoo, Sun-Geon;Kim, Seok-Man;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The 1Gbps clock and data recovery (CDR) circuit using the proposed multi-point phase detector (PD) is presented. The proposed phase detector generates up/down signals comparing 3-point that is data transition point and clock rising/falling edge. The conventional PD uses the pulse width modulation (PWM) that controls the voltage controlled oscillator (VCO) using the width of a pulse period's multiple. However, the proposed PD uses the pulse number modulation (PNM) that regulates the VCO with the number of half clock cycle pulse. Therefore the proposed PD can controls VCO preciously and reduces the jitter. The CDR circuit is tested using 1Gbps $2^{31}-1$ pseudo random bit sequence (PRBS) input data. The designed CDR circuit shows that is capable of recovering clock and data at rates of 1Gbps. The recovered clock jitter is 7.36ps at 1GHz and the total power consumption is about 12mW. The proposed circuit is implemented using a 0.18um CMOS process under 1.8V supply.