The purpose of this study are suggest to performance measurement model of Electronic Medical Record(EMR) and Key Performance Index(KPI). For data collection, 665 questionnaires were distributed to medical record administrators and insurance reviewers at 31 hospitals, and 580 questionnaires were collected(collection rate: 87.2%). Regarding methodology, Critical Success Factor(CSF) and index of the information system were derived based on previous studies, and these were set as performance measurement factors of EMR system. The performance measurement factors were constructed by perspective using BSC, and analysis on causal relationship between factors was conducted. A model of causal relationship was established, and performance measurement model of EMR system was proposed through model validation. Analysis on causal relationship between performance management factors revealed that utility cognition of the learning & growth perspective factor had causal relationship with job efficiency(${\beta}=0.20$) and decision support(${\beta}=0.66$) of the internal process perspective factors, and security had causal relationship with system satisfaction(${\beta}=0.31$) of the customer perspective factor. System quality had causal relationship with job efficiency(${\beta}=0.66$) and decision support(${\beta}=0.76$) of the internal process perspective factors, all of which were statistically significant(P<0.01). Job efficiency of the internal process perspective had causal relationship with system satisfaction(${\beta}=0.43$), and decision support had causal relationship with decision support satisfaction(${\beta}=0.91$) and job satisfaction (${\beta}=0.74$), all of which were statistically significant(P<0.01). System satisfaction of the customer perspective had causal relationship with job satisfaction(${\beta}=0.12$), job satisfaction had causal relationship with cost reduction(${\beta}=0.53$) of the financial perspective, and decision support satisfaction had causal relationship with productivity improvement(${\beta}=0.40$)of the financial perspective(P<0.01). Also, cost reduction of the financial perspective had causal relationship with productivity improvement(${\beta}=0.37$), all which were statistically significant(P<0.05). Suitability index verification of the performance measurement model whose causal relationship was found to be statistically significant revealed that $X^2/df=2.875$, RMR=0.036, GFI=0.831, AGFI=0.810, CFI=0.887, NFI=0.838, IFI=0.888, RMSEA=0.057, PNFI=0.781, and PCFI=0.827, all of which were in suitable levels. In conclusion, the performance measurement indices of EMR system include utility cognition, security, and system quality of the learning & growth perspective, decision support and job efficiency of the internal process perspective, system satisfaction, decision support satisfaction, and job satisfaction of the customer perspective, and productivity improvement and cost reduction of the financial perspective. In this study, it is expected that the performance measurement indices and model of EMR system which are suggested by the author, will be a measurement tool available for system performance measurement of EMR system in medical institutions.