• Title/Summary/Keyword: Borel measure

검색결과 48건 처리시간 1.47초

A Property of Borel Subsets of Wiener Space

  • Ryu, K.S.
    • 충청수학회지
    • /
    • 제4권1호
    • /
    • pp.45-48
    • /
    • 1991
  • Wiener measure $m({\lambda}B)$ can behave arbitrarily badly as a function of ${\lambda}$ for Wiener measurable sets B. We show however that $m({\lambda}B)$ is Borel measurable with respect to ${\lambda}$ for any Borel subset B of $C_0$[0, 1].

  • PDF

INVARIANT MEASURE AND THE EULER CHARACTERISTIC OF PROJECTIVELY ELAT MANIFOLDS

  • Jo, Kyeong-Hee;Kim, Hyuk
    • 대한수학회지
    • /
    • 제40권1호
    • /
    • pp.109-128
    • /
    • 2003
  • In this paper, we show that the Euler characteristic of an even dimensional closed projectively flat manifold is equal to the total measure which is induced from a probability Borel measure on RP$^{n}$ invariant under the holonomy action, and then discuss its consequences and applications. As an application, we show that the Chen's conjecture is true for a closed affinely flat manifold whose holonomy group action permits an invariant probability Borel measure on RP$^{n}$ ; that is, such a closed affinly flat manifold has a vanishing Euler characteristic.

AFFINE MANIFOLD WITH MEASURE PRESERVING PROJECTIVE HOLONOMY GROUP

  • Park, Yeong-Su
    • 대한수학회보
    • /
    • 제38권1호
    • /
    • pp.157-161
    • /
    • 2001
  • In this paper, we prove that an affine manifold M is finitely covered by a manifold $\overline{M}$ where $\overline{M}$ is radiant or the tangent bundle of $\overline{M}$ has a conformally flat vector subbundle of the projective holonomy group of M admits an invariant probability Borel measure. This implies that$x^M$is zero.

  • PDF

A NOTE ON A GENERAL MAXIMAL OPERATOR

  • Kim, Kyung-Hwa
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.155-162
    • /
    • 1995
  • Let $\mu$ be a positive Borel measure on $R^n$ which is positive on cubes. For any cube $Q \subset R^n$, a Borel measurable nonnegative function $\varphi_Q$, supported and positive a.e. with respect to $\mu$ in Q, is given. We consider a maximal function $$ M_{\mu}f(x) = sup \int \varphi Q$\mid$f$\mid$d_{\mu} $$ where the supremum is taken over all $\varphi Q$ such that $x \in Q$.

  • PDF

ON RADIAL OSCILLATION OF ENTIRE SOLUTIONS TO NONHOMOGENEOUS ALGEBRAIC DIFFERENTIAL EQUATIONS

  • Zhang, Guowei
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.545-559
    • /
    • 2018
  • In this paper we mainly investigate the properties of the solutions to a type of nonhomogeneous algebraic differential equation in an angular domain. It includes the Borel directions of the solutions, the width of angular domains in which the solutions take its order and the measure of radial distributions of Julia sets of the solutions.

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

AN OPERATOR VALUED FUNCTION SPACE INTEGRAL OF FUNCTIONALS INVOLVING DOUBLE INTEGRALS

  • Kim, Jin-Bong;Ryu, Kun-Sik
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.293-303
    • /
    • 1997
  • The existence theorem for the operator valued function space integral has been studied, when the wave function was in $L_1(R)$ class and the potential energy function was represented as a double integra [4]. Johnson and Lapidus established the existence theorem for the operator valued function space integral, when the wave function was in $L_2(R)$ class and the potential energy function was represented as an integral involving a Borel measure [9]. In this paper, we establish the existence theorem for the operator valued function we establish the existence theorem for the operator valued function space integral as an operator from $L_1(R)$ to $L_\infty(R)$ for certain potential energy functions which involve double integrals with some Borel measures.

  • PDF

TOEPLITZ AND HANKEL OPERATORS WITH CARLESON MEASURE SYMBOLS

  • Park, Jaehui
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.91-103
    • /
    • 2022
  • In this paper, we introduce Toeplitz operators and Hankel operators with complex Borel measures on the closed unit disk. When a positive measure 𝜇 on (-1, 1) is a Carleson measure, it is known that the corresponding Hankel matrix is bounded and vice versa. We show that for a positive measure 𝜇 on 𝔻, 𝜇 is a Carleson measure if and only if the Toeplitz operator with symbol 𝜇 is a densely defined bounded linear operator. We also study Hankel operators of Hilbert-Schmidt class.

A CLASS OF THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Ahn, Byung-Moo
    • 대한수학회지
    • /
    • 제34권3호
    • /
    • pp.569-579
    • /
    • 1997
  • We investigate the existence of the operator-valued Feynman integral when a Wiener functional is given by a Fourier transform of complex Borel measure.

  • PDF