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STABILITY THEOREMS FOR THE
OPERATOR-VALUED FEYNMAN
INTEGRAL: THE £(L;(R),Co(R)) THEORY

K. S. CHANG, J. W. Ko AND K. S. Ryu

ABSTRACT. In this paper, we prove stability theorems for the operator-
valued Feynman integral of certain functionals involving some Borel
measures on (0,t) as a bounded linear operator from L;(R) to
Co(R).

0. Introduction

In 1984, Johnson proved a bounded convergence theorem for the
operator-valued function space integral [6]. As far as we know, this is
the first stability theorem for the integral as a bounded linear operator
on La(R™) where n is any positive integer. In [9], Johnson and Skoug in-
troduced stability theorems for the integral as an L£(L,(RY), Ly (RV))
theory, 1 < p < 2, where N is a positive integer such that N < 2—2_7’;
and % + z% = 1. Chang studied stability theorems for the integral as
a bounded linear operator from L;(R) to Cp(R) [2]. In those papers
mentioned above, they treated certain functionals which involve only
the Lebesgue measure on the interval (0,1).

In [7], Johnson and Lapidus established stability theorems for the
integral as an L£(La(RY),L2(RY)) theory for certain functionals in-
volving any Borel measures on (0,t). Chang and Ryu proved theorems
insuring stability with respect to potentials and wave functions for the
integral as a bounded linear operator on L,(R") for certain functionals
involving some Borel measures on (0,t) [4].

Functionals we consider in this paper are defined in terms of po-
tentials, wave functions and measures. We study the stability of the
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operator-valued Feynman integral as an £(L;i(R),Co(R)) theory for
the functionals involving some Borel measures on (0, ¢) with respect to
potentials, wave functions and measures.

1. Preliminaries and notations

Let R,C,C* and Ct denote the set of all real numbers, all complex
numbers, all complex numbers with positive real part and all nonzero
complex numbers with nonnegative real part, respectively. Cy(R) will
denote the space of C-valued continuous functions on R which vanish at
oo with the supremum norm. L;(R) is the space of Borel measurable,
C-valued functions ¢ on R such that || is integrable with respect
to the Lebesgue measure m on R with the norm |9} = [ |¢|dm.
L(Lq(R), Co(R)) will denote the space of bounded linear operators from
L1(R) to Co(R). Let M(0,t) denote the space of complex Borel mea-
sures 77 on the interval (0,¢) which satisfy the following conditions;

(1) If p is the continuous part of 77, the Radon-Nikodym derivative

%Jn%' exists and is essentially bounded, where m is the Lebesgue
measure on (0,1).

k
(2)n = ijéTj + p, where 6, is the Dirac measure at
=1
15,€(0,8),0<m <-- <7 <tandw; € Cforj=1,2,---,k.
Let 7 € (2,00] and 7 € M(0,t). Let Ly,.,([0,t] x R) = Ly,.,, be the
space of all Borel measurable C-valued functions 4 on [0,t] x R such
that

1
,.

(L1) 16 1= { /«m 0G5, ) I d|n|<s>}

is finite. If 0 is in Ly,., and 7 = p + v is the Lebesgue decomposition,
it is not difficult to show that @ € Li,., N Lir.. Let n € M(0,t). A
Borel measurable C-valued function € on [0,t] x R is said to belong to
Loy if

(12) [6)cct = [

0,

) 10(s5 -)loo dinl(s)
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is finite. For A &€ (f:*, ¥ € L1(R) and a positive real number s, let

Alu

_~\2
(13 (OO = (5" [ ) exp(- 20 amu).

Then C)/, is in L(L1(R), Co(R)) and {|Cy /sl < (|\|/27s)? [8]. And as
a function of A, C)/; is analytic in C* and is weakly continuous in ct
[8]. Let @ be in L1 (R) and let My be the operator of multiplication from
Co(R) to Li(R) given by Mgy = 8. Then My is in L(Co(R), L1(R))
and || Mpl| < {|6]1 [3]. It will be convenient to let 8(s) denote My, )
for 0 in Liy.q.

Let C[0,t] be the space of continuous functions on [0,t] and the
Wiener space, Cy|0, t], will consist of those z in C[0, ¢] such that z(0) =
0. Integration over Cyp|0,t] will always be with respect to the Wiener
measure m.,.

Let F be a functional from C[0,t] to C. Given A > 0,9 € Li(R)
and £ € R, let

L9 (L(F))E) = / F(A 42+ )93 ba(t) + £) dma(a).

Co [O,t]

If I\(F)y is in Cy(R) as a function of £ and if the correspondence
¥ — I\(F)y gives an element of £ = £(L;1(R), Co(R)), we say that the
operator-valued function space integral I\(F) exists. Next suppose
that there exists A\o(0 < Ag < o0) such that I (F') exists for all A
in (0, o) and further suppose that there exists an £-valued function
which is analytic in C, = {\ € C|Re) > 0,|A| < Ao} and agree with
I5(F) on (0, A\g). Then this £-valued function is denoted by I§™(F’) and
is called the operator-valued analytic Wiener integral of F' associated
with A. Finally, let ¢ be in R with 0 < |¢] < Ap. Suppose there exists
an operator JZ™(F) in £ such that for every ¢ in L1(R), Jg"(F)¥ is
the weak limit of I§™(F)¢ as A — —iq through (C:\FO. Then Jg™(F) is
called the operator-valued Feynman integral of F' associated with g.
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As we continue, we will need to write
[wi0(r1,2(11)) + -+ W,mO(Tm, 2(Tm)) + 0(s,2(s))]"

as a product of monomials. However, we will need more refined break-
down of the sum. It will be convenient to introduce a prime nota-

!
tion on sum like E : this sum is to be over integers

Qo+t Fem-_k=n
90,91, " ,gm—k, Where go > 0,q1 > 1,--- ,gm-r = 1 and go + --- +
gm—k = n. Using this notation, we have the following equality [3]

(1.5)
[Zwe(n, (1)) +6(s, x(s»]
3=1
' n!
) 2 -

—k<m got+q1t+--t+qm-k=n
[wzle(”'zn Tzl))] w07 &, IR [0(s, 2(5))] 0.

nMs

Gm—k!

Let n € M(0,t) and 0 € Ly,.,. Set

(1.6) .
F,(z) := ( (s, z(s)) dn(s)) ,z€Cl0,t], n=0,1,2,---.
(0,%)

Here, if n = 0, from the definition, we have Ix(Fp) = Cy/:.
We use the following two theorems from [1,3] in the sequel.

m
THEOREM 1.1. Letn = Z w;0,, +u where ., is the Dirac measure
Jj=1
at7; € (0,t),0<nn <---<Tp<tandw; €Cforj=12---,m.
Suppose that 0(7;,-),7 = 1,2,--- ,m, are essentially bounded. Then
the operators I§"(Fy,) and JZ™(Fy) exist for all A € C* and all real



Stability theorems for the operator-valued Feynman integral 1003

q # 0, respectively. Further for A € C*, ¢ € L;(R) and £ € R,

(1.7)
(IR (Fn)¥)(€)

m
DS s gt

... i
k=0 1<z <-<zm_k<m qotqi+tgmog=n L Im—k:

Y [ (eoke

1+ Jm—k+1=90 90531+ sIm—k+41

e} Lm—k)"/")(g) d g—21 M(Si)] ’

where

(1.8)

215 3 Zm—k
403315 3 Im—k+1

={(51,""* 18¢) € (0, )P |0 < 81 < -+ < 85, < Ty
< S5i+41 < < Sjytetimor < Tzmok
< Sjykertimontl < 700 < 8gp < t}

21y 9y @m—k
and for (s1,--+ ,84,) € Aqo;jh"- Wm—k+1 and a € {0,1,--- ,m — k}

(1.9)
Lo =6(r,,)% o Cx(ssy 4 tiat1—Taa) © OSirtetiat1) 0o

o 0(3j1+"'+ja+1) o CA/(T"a+1_sjl+m+j°‘+l).

(It is convenient to let 6(7)? denote the operator of multiplication by
[0(7,-)]9, that is, 6(T)? = Mig(s,)e. We use the conventions Ty =
0, Tm+1 =t and 0(19)% = 1, where 1 is the inclusion map.)

For all real g # 0, (J3"(Fn)¥)(€) is given by the right hand side of
(1.7) with A = —iq. Finally we have for A € Ct,

(1.10) X" (Fr)ll < Br(lAD),
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e ()

1
A 2 . _mtl
(|2—7T|> ][lgjl.glm(Tj—Tj—l)] ?

rea-5| 7 - Ty [ﬁ:j (1065 Yoo ¥ 1065 1)
+(§<rj—fj_1)l-%') ("")%neuw el “iru—%)'ﬁr,

where | is a positive integer such that I'(1(1— %)) is the minimum value
of {T'(i(1 — g—/))lz € N}, T is the gamma function,  + X =1 and the
notation a V b means the maximum value of a and b. The inequality
(1.10) also holds for Jg™(F,,) with |)| replaced by lq.

Let Ao > 0 be given and f(z) = Z a,2" be an analytic function in

n=0

[o 0}
C}\LO such that Z |an|Bn(JA]) < oo for all A in (Cjo.
n=0

Let

L12)  F)= f( 5 o(s,y(s»dn(s)) for y in C[0, 1.

m
THEOREM 1.2. Letn = Z w;0r; +p where 6., is the Dirac measure
=1
at ;€ (0,t),0 < <---<Tp<tandw; €C forj=1,2,--- ,m.
Suppose that 6(t;,-),5 = 1 2,---,m, are essentially bounded. Then

for A € (0, X0) and £ € R, Z anFrn(A~ 2w+§) converges absolutely for

a.e. T € Cp[0,t]. Also the operators I$™(F) and J3"(F') exist for all
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A€ Cj{o and for all real q with 0 < |q| < Ao, respectively. Further for
reCy

(1.13) I™MF) =Y apnI$™(Fy)
n=0

and

(1.14) JEMF) =) an J{™(Fy),
n=0

where F,, is the functional defined in (1.6). Moreover, for A in Cj"o, the
series in (1.13) and (1.14) satisfy

(1.15) IIE™(F) < D lan|Ba(|Al)
n=0

and

(1.16) ITE(F) < D lan|Ba(lal)
n=0

and both of them converge in the operator norm.

2. Stability theorems

Firstly, we establish the stability for the operator-valued Feynman
integral of functionals involving some Borel measures on (0,t) with
respect to potentials.

k
THEOREM 2.1. Let n be in M(0,t) withn = p + préTp. Let
p=1
H € Lyy., and H(7p,-) be essentially bounded for eachp=1,2,--- , k.
Let V) N =1,2,-- -, be Borel measurable functions on [0,t] x R such
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that for n x m-a.e.

(2.1.a) ) —— 9 asN — o
and
(2.1.b) 0| <|H| forN=1,2,---.

Then 6 and 6N) belong to Lir.,. Let F,(lN) be defined in (1.6) with
0 replaced by 8N). Then for all real ¢ > 0, Jg™(Fy) and J,‘Im(F,(;N))
exist for each N € N and as N — o0,

J,‘;"(F,EN N — Jg™(Fn)  in the operator norm.

Proof. By (2.1), 6™ ||1r < ||H|l1r:n for N =1,2,--- and so §0V)
and @ arein Li,.,. And 0(7p,),p=1,2,--- , k, are essentially bounded.

Hence by Theorem 1.1, for each N € N, J7"(F},) and J“"(F(N)) N =
1,2,---, exist for all real ¢ > 0. For each ¢ € L,(R) a.nd q>0,

Je™(FNYY — JE(Fr)lloo

m
1] n!ru] IQI. . .IUJ IQm—k
<), X > PRI
k=0 1<z <+ <zm—k <M qortgrt +gm—_k=n Qe Gmek
got+tm—k+1

&) "L X

J1t-tim—k+1=490

~1
Azl,... ek [31 o (T = sjl)(sj1+1 —Tz) e (E- sqo)] 2

90:31: Im—k+1

/]RqO+m P HG(N) Sis ’U,,) H Tz ? J)
m—k

_HO(Szavz H szv ]) qJ

j=1

—k
d >< vzd x vid x lpl(s,)
=1
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Since
1™ (FM ) = Jg™ (Fr ) lloo
< Wl (g™ EM + 1T (Fa)ll) < oo,

by applying the Fubini theorem we obtain the above inequality.

(2.2)
1™ (FEV) = Jam(Fa)

SIS g pleal® e,

f... !
k=0 1<21< <2z <m Qo+ + - +gm_r=n ql. qm_k.

(%)M—[ > s E2E )]

Jrt-+Him—bt1=4o 90371+ v Im—k+1

where

(2.3)
L(N) = L(N;q0;51,"** ,5¢5)

= {31 tee (TZ1 - sjl)(sj1+l - 7'21) e (t - sl]o)]_%

m—k
fon He (s00) JL O o)™

—HO(S',,,’U',,) H 7'237 _7) )%

—k
d x v; d ™ v-.
=1 j=1

We know that by (2.1.a), as N — oo,

J

g0 m—k
(2.4) HO(N)(-S‘i,’Ui) H (0N (1, ,v}))%
=1 =1

m—k

*Hasuvz [] 6y 0))%  ace.

Jj=1
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Since for every N € N, |0N)(s,u)| < |H(s,u)| for 7 x m-a.e.(s, u),

(2. 5)
e m—k
H Q(N) 31 'U2 H O(N) Tz ’U qJ - H 6 Si, v’L H (0(sz ’ v.;))q]
- j=1 i=1 j=1
g0 m— J
<2 HH(3i>vz H TZJ’ J
i=1 Jj=1

—k go m—k
Then, []72; H(si,v:) H;';l H(ry;,v5)% is Xy X v-integrable. In
j=

view of (2.4) and (2.5), the dominated convergence theorem gives
L(N) — 0as N — oo.
Now, we claim that

(2.6) / e A X Jl(5) =0 as N oo,
Aqo:jl,“' Im—k+1 =

For a.e.(s1, -+ ,84,) € AL Em=x by (2.5) and the Fubini theorem

90371, sJm—k+1"

(2.7)
|L(N)|
S 2[31 PN (Tzl - Sjl)(3j1+1 — Tzl) e (t — sqo)]—%
d0 m—k e
H(s;,v; i) % d ;d
/]R<10+m-—ki]‘—=‘g (S ’U) l;I (H(T 50 Vj )) 7 XI’U Jfl ’UJ

< 2[31 Tt (TZ1 - sjl)(sjl+1 - Tzl) T (t - 8‘10)]——%
m—k

H 1 H (255 MNE - [H (7255 ) 1) HHH sis )1
j=1 i=1

Then, by Hélder’s inequality, the right hand side of the inequality
in (2.7) is x,u-integrable. Hence, by the dominated convergence

theorem, (2.6) is established. Therefore, Jg”(F,(lN )) — Jg"(Fn) as
N — oo in the operator norm. Thus, we have proved the theorem. [J
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REMARK 2.2. For each n € N, define B};(|q|) by

n

Iql mil lq] 3 -z4
=o0*|(5) " V(5

rea-5)])"" ra-5] ™ [2 A eV IH 1

™ N7 (1l *
+<Z(Tj—7'j_1)1"'2") (%) ”H”h':p,

=1

[ min (7 - Tj—l)}

/

gy

Then [|Je(FM)|| < Bi(lgl) and [|72™(Fu)|| < Bx(la).

dlul
dm

oo
Let Ao > 0 be given and f(z) = Z a,2" be an analytic function in

n=0

o0
C;\‘"o such that Z |arn|Br(lg]) < oo for all real g with 0 < |g| < Ap. Let

n=0
(2.9) F(y)=f( o(s,y<s))dn(s>) for y in C[0,4
(0,t)
and

(2.10) F<N><y>=f( 9<N>(s,y(s>)dn(s>) for y in C[0, 4.

(0,t)

THEOREM 2.3. Let the hypotheses of Theorem 2.1 be satisfied.
Then for each real ¢ > 0,J7"(F) and J,‘;"(F(N)), N =1,2,--., ex-
ist where F and FM) N = 1,2,---, are given by (2.9) and (2.10),
respectively. Moreover, as N — oo

(2.11) Jg"(F(N)) — Jg™(F) in the operator norm.
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Proof. By Theorem 1.2, for each real ¢ > 0, J3"(F') and J;"(F(N)),
N =1,2,---, exist. And further they can be represented as

JEF) =) anJi(Fn)

n=0
and -
JHEMN) =3 "0 J¢"(FN))  forall N €N.

n=0

Since [|J;™(F) —Jg"(F(N)) <2 Z lan|B;(gq) by Remark 2.2, we have

n=0
: an N
(2.12) Nh—l-)1<1>o Jg (FWN))

N-—00

o0
= lim Y a,JM(FM)
n=0 ’

oo
=2 im, an i (EY)

n=0

- i anJ™(F)

n=0

= J7™(F) in the operator norm.

Thus, the proof of Theorem 2.3 is complete. |

Now, we consider the stability for the operator-valued Feynman in-
tegral of functionals with respect to wave functions.

THEOREM 2.4. Let {¢/(M} be a sequence in Li(R) and | %) —

¥ |1— 0 as N — oco. Then for N € N, J¢™(F)y and J™(FN))y(V)
exist in Co(R) for real ¢ with 0 < |q| < Ag. Moreover,

(2.13) [JE(EMNY ) — Jo (FYg|leo — 0 as N — oo.

Proof. By Theorem 1.2, J2"(F)y and J¢™(F(M))y(") exist in Co(R)
for ¢ > 0. By Theorem 2.3 and ||Jg"(F(M)¢(M - le"‘(F)szc>o
< NI FMN) = glly + I (FO) = Jen(F)l|9]l1, we prove
the theorem. O
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THEOREM 2.5. Suppose that {qn} is a sequence of real numbers
which converges to a nonzero real number q with 0 < |g| < Ao. Then
as N — oo,

(2.14) Jow(F) — JJ™(F) in the operator norm .

Proof. Let g be in R with 0 < |g| < Mg and ¢ € Li(R). Then, from
(1.6) and (1.12) we have

(2.15)
(Jan (F)9)(E) — (J™(F)¥)(€)
> e / nlw® - winTk
= an
7;—0 kz=0 1§21<~‘<sz_k§mqo+¢h+~Zi-:qm—k=n ql' qm—k!

Z /,1,... [31"'(t—-sqo)]—%

. . Em—k
JitetIim—k+1=90 90331 s Im—k+1

—1 agtm—k+1 —12q . a tmokt1
2w on

Aqo+m—k+1 iI_Ie(su 'U'L H (0 ’TZJ,’UQ Q[J(’I)m_k_,'_l)

) —£)2 - 2 m—k+1
eXp(ZqTN((vl £ +...+( m—k+1 )qo) ))dggv,d VAR

s1 (t — g4 i=1 j=1 7
+<—)ﬂ“‘ 5 H0<s,,v,) H(om,,v P Wl
otm— k+1 =1
ign , (v1 5)2 ('U;n— _vqo)Q
[‘”‘p( R s ey ’)
ig (v1 — §)? (Vs k1 = Va0)?
(g )

q ~k+1 q
d x v,dmx }d X u(s;).
i=1 j=1 =1

Let § = 1 min{|q], Ao — |q|}. By the hypotheses, there exists a posi-
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tive integer My such that if N > Mj, we have

—igN dotm kil —iq agm—k+1
2. —
@1 (G2 o
1 _0_+m kt1 41+m k41 qo+m—k+1
<(2 [|QN| lg| = ]
Y8
< Z(M—+6)qg+rr;—k+1 .
2

For each n € N,

(2.17)
1 Jgn (Fn) = Jg™(Fn)||

N0 S I >

m—k <M Go+q1++gm—k=n J1+-+Jim-k+1=00

1
S loreet= s

{l( in) qtmoktl —'iq)QQ+'"12—k+1
2

-k
/]Rqo+m kHIG si, Vi) H 0(7=;,93)|% d X >< v d ><1 v

X gotm— k+1
ﬁ : QJ
- l( 27T Rao+m—k Hla(s“vl | H |9(T21,’U |
i_qi\[ (v1 — 5)2 _ _ ( ':n—k—{—l - qu)
(5 C—sm)
— exp i_q((vl - (Vin—tr1 — UQO)2)
2 81 (t—sq)

90 m—k 9o
d X v;d x v:bd X 8;i).
i=1 © =1 v’} i=1 [ml(s:)
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Then, for N such that N > My,
(2.18)

—1
Azl S, [81---(7'21 —Sjl)(s.’i1+1_Tzl)"'(t_s%)] 2

90371 vIm—k+1

(—in)q9+rr»2~k+1 (——iq agtm-k+1
2w 2

—k
/]R +m—k H|9 i, i) II |9(Tza’”3)|q’d >< vid >< ’UJ
qot+m— "
i=1

|QI e
+( /IR + kHle&,v,lHlaTzJ,qu9
ap+m-—

ign (v —&)? (Vy _gy1 — qu)2 )
x — ——t e 4 B 8
’e p( 2 t—sm)
. _£\2 / _ 2
_exp<ﬂ((vl yﬁ) ..... (Vin—ks1 — Vao) )>‘
2 S1 (t - 3‘10)
d ‘ié’lvzd <l Sd X ul(s:)
S/,,1 vz k [31 Tt (Tzl - sjl)(sj1+1 - T21) tUe (t - sqo)]_%
Aqo:i1»~-.jm—k+1
[2(IQI +6)qg+m2—-k+l + (M)qwmz—kﬂ]
2
dlp|||? ,
Huo 56, H 167y, S 160, | B g %
0o i=1
|QI+5 sgtmokt1 |q|| armoki1 dlul ||
2 ( ) d_m

m—

T 1609015 1667, . . TT 16655,

j=1 qo:jl Sim—k41 =1

51+ (Tay = 85,) (85041 — Tor) - -+ (8 = 5go)] " 2d ,>=< s

Since [51 tte (Tzl - sjl)(sj1+1 - Tzl) e (t - Sl]o)] 3 ”0(517 )“1 18 xz—lsl
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integrable and gy — ¢, by the Hélder’s inequality and the dominated
convergence theorem, Jg;}(F,(LN)) converges to Jo"(F) in the operator
norm as N — oo.

Therefore, since ||JZ"(F) — Jen(FM)|| < 2 Z anB}(q) < 0o

n=0

(oo}
(2.19) i i) = Jim D and 3 (Fu)
o0 o0
= 2 o i T () = 3 on i (Fr)

= J"(F) in the operator norm. O

COROLLARY 2.6. Suppose that the hypotheses of Theorem 2.1 and
Theorem 2.5 are satisfied. Then as N — 0o

(2.20) J(F™N)) — Je™(F) in the operator norm .

Proof. We may assume that |gy| < Ao for sufficiently large N,

I TER @) — JeE)| < N Tgm(FE®) — Ten(F)| + | Jgn (F) = Jg™(F)])-
Since [|JeM(FW)) — Jer(F)| — 0 as N — oo for each gy and
|Je(F) — Ja(F)|| — 0 as N — oo, thus Je(F(M) — Jen(F) as
N — o0 in the operator norm. O

COROLLARY 2.7. Suppose that the hypotheses of Theorem 2.1,
Theorem 2.3 and Theorem 2.4 hold. Then as N — oo,

(2.21) 1T (FN )y = J§™(F)dlloo — O,

Finally, we treat the stability theorem for the operator-valued Feyn-
man integral with respect to measures.
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THEOREM 2.8. Let 6 be a continuous function bounded by ¢ and
let n and ny,N =1,2,--- be in M(0,t). Assume that

(2.22) NN — 1 weakly.

Let F be defined as in (2.9) and Fy be defined as in (2.9) with g
replaced by nn. Then

(2.23) IfM(Fn) — I3"(F)  in the operator norm,
uniformly in X\ on all compact subset of Cj\LO.
Proof. For ¢ € Li(R), £ € R and A > 0,

(2.24)
(IN(Fn))(E)

=/ f( 6(s, A" 3y(s)+€) dﬂN(S)) YA~ Fy(t)+€) dma(y)
colo]” \Jo,0)

and we have similar result for F' by replacing ny by 7 in (2.24). Given
y € C[0,t], the function 6(s,A\"2y(s) + ¢&) is bounded by c and it is
continuous as a function of s. Hence, by (2.22),

225 [ 0(s,\"3y(s) + &)dnn(s) — / 0(s, "} y(s) + E)dn(s).
(0,t) (0,t)

Since f is continuous,

(2.26)
f( 05, A~ Fy(s) + a)dms))z/:(x%y(t) +e)
(0,

)
=1 oA hute) + anva) Jurhue + o)
it
By the uniform boundedness principle and (2.22),

8(s, x"2y(s) + €) dnn (s)
(0,8)
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is bounded by M with M = c - sup|nn/||. Thus
N

(2.27)
‘f( es‘x2y<)+s)mhx@)¢mx%yu)+sﬁ
(o,t)
< M3 Hy(H) + ©)]

where My = sup |f(z)| < 0o. Recall that [(A~2y(t) + £)| is Wiener
fz|]<M

integrable. In view of (2.26) and (2.27), the dominated convergence
theorem yields

(228) ((EWE) — (AFW)E)  as N — oo for aes € R.
Thus,
(2.29) L(Fn)Y — L(F)Y in Cy(R).

Now, I$"(Fn) is analytic for A € C;"O. By Wiener integration formula
[10],

(2.30) umwwwmsm(“)nwlN=Lm~.

Hence, by (2.29) and (2.30), Vitali Theorem [5] gives the result for
X € CY,. O

The conclusion of Theorem 2.8 can be reinforced provided that we
assume that measures converge in the strong sense.

THEOREM 2.9. Assume that 7y — 71 in norm. Then, under the
hypotheses of Theorem 2.8

(2.31) I3 (Fn) — I(F)

uniformly in A on all compact subset of C:\"o.
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Proof. Given y € C[0,t] and £ € R

(2.32)
] 0(s, A~ Hy(s) + E)dnn(s) — [ 0(s, A~dy(s) + E)dn(s)
(0,t) (0,t)
< |lnv = nll116]]oo-

For ¢ € Li(R), a.e. £€Rand A >0
(2.33)
\f( (s, \Hy(s) + g)dms))wx%y(t) 1)
(o’t)
- f( /( e ho)+ s)dn(s))w(ﬁy(t) + e)]
< Twlp(A~2y(t) + €),

where Ty = sup{|f(21) — f(22)| | |21 — 22| < |lov — 2lll6llo}-
Thus, for A >0

(2.34) I (Fn)Y — IN(F)Y oo
< / T (A~ Fy(t) + &) ldma (y)
Co{0,t}

<Tw(3%) Wl

Since 1 is arbitrary and Txy — 0, I\(Fn) — I\(F) in the operator
norm topology. Since I§™(Fy) is analytic in C}, and [|I¢™(Fn)| <
Inn1|||0llco, the Vitali theorem [5] yields (2.31). Thus, the proof of
theorem is complete. O
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