DOI QR코드

DOI QR Code

TOEPLITZ AND HANKEL OPERATORS WITH CARLESON MEASURE SYMBOLS

  • Park, Jaehui (Research Institute of Mathematics Seoul National University)
  • 투고 : 2020.11.05
  • 심사 : 2021.02.03
  • 발행 : 2022.01.31

초록

In this paper, we introduce Toeplitz operators and Hankel operators with complex Borel measures on the closed unit disk. When a positive measure 𝜇 on (-1, 1) is a Carleson measure, it is known that the corresponding Hankel matrix is bounded and vice versa. We show that for a positive measure 𝜇 on 𝔻, 𝜇 is a Carleson measure if and only if the Toeplitz operator with symbol 𝜇 is a densely defined bounded linear operator. We also study Hankel operators of Hilbert-Schmidt class.

키워드

참고문헌

  1. S. Axler, J. B. Conway, and G. McDonald, Toeplitz operators on Bergman spaces, Canadian J. Math. 34 (1982), no. 2, 466-483. https://doi.org/10.4153/CJM-1982-031-1
  2. A. Brown and R. G. Douglas, Partially isometric Toeplitz operators, Proc. Amer. Math. Soc. 16 (1965), 681-682. https://doi.org/10.2307/2033903
  3. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89-102. https://doi.org/10.1515/crll.1964.213.89
  4. L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. https://doi.org/10.2307/1970375
  5. C. Chatzifountas, D. Girela, and J. Pelaez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl. 413 (2014), no. 1, 154-168. https://doi.org/10.1016/j.jmaa.2013.11.046
  6. R. E. Curto, I. S. Hwang, D. Kang, and W. Y. Lee, Subnormal and quasinormal Toeplitz operators with matrix-valued rational symbols, Adv. Math. 255 (2014), 562-585. https://doi.org/10.1016/j.aim.2014.01.008
  7. R. E. Curto, I. S. Hwang, and W. Y. Lee, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230 (2012), no. 4-6, 2094-2151. https://doi.org/10.1016/j.aim.2012.04.019
  8. R. E. Curto, I. S. Hwang, and W. Y. Lee, Hyponormality of bounded-type Toeplitz operators, Math. Nachr. 287 (2014), no. 11-12, 1207-1222. https://doi.org/10.1002/mana.201300200
  9. R. E. Curto, I. S. Hwang, and W. Y. Lee, Matrix functions of bounded type: an interplay between function theory and operator theory, Mem. Amer. Math. Soc. 260 (2019), no. 1253, v+100 pp. https://doi.org/10.1090/memo/1253
  10. J. J. Duistermaat and Y. J. Lee, Toeplitz operators on the Dirichlet space, J. Math. Anal. Appl. 300 (2004), no. 1, 54-67. https://doi.org/10.1016/j.jmaa.2004.05.031
  11. P. L. Duren, Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970.
  12. P. Galanopoulos and J. Pelaez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math. 200 (2010), no. 3, 201-220. https://doi.org/10.4064/sm200-3-1
  13. J. B. Garnett, Bounded Analytic Functions, revised first edition, Graduate Texts in Mathematics, 236, Springer, New York, 2007. https://doi.org/10.1007/0-387-49763-3
  14. P. Hartman and A. Wintner, The spectra of Toeplitz's matrices, Amer. J. Math. 76 (1954), 867-882. https://doi.org/10.2307/2372661
  15. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
  16. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962.
  17. J. Park, Toeplitz operators whose symbols are Borel measures, J. Funct. Space 2021 (2021), Art. ID 5599823, 11pp. https://doi.org/10.1155/2021/5599823
  18. V. V. Peller, Hankel Operators and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21681-2
  19. R. Rochberg and Z. J. Wu, Toeplitz operators on Dirichlet spaces, Integral Equations Operator Theory 15 (1992), no. 2, 325-342. https://doi.org/10.1007/BF01204241
  20. M. Rosenblum, Self-adjoint Toeplitz operators and associated orthonormal functions, Proc. Amer. Math. Soc. 13 (1962), 590-595. https://doi.org/10.2307/2034831
  21. K. Stroethoff, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 (1992), no. 1, 3-16. https://doi.org/10.1307/mmj/1029004449
  22. O. Toeplitz, Zur Theorie der quadratische Formen von unendlichvielen Verainderlichen, Gottinger Nachrichten (1910), 489-506.
  23. O. Toeplitz, Uber die Fourier'sche Entwicklung positiver Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 191-192. https://doi.org/10.1007/BF03014794
  24. H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365-375. https://projecteuclid.org/euclid.pjm/1103034389 https://doi.org/10.2140/pjm.1964.14.365
  25. H. Widom, Hankel matrices, Trans. Amer. Math. Soc. 121 (1966), 1-35. https://doi.org/10.2307/1994330
  26. D. R. Yafaev, Toeplitz versus Hankel: semibounded operators, Opuscula Math. 38 (2018), no. 4, 573-590. https://doi.org/10.7494/opmath.2018.38.4.573