A NOTE ON A GENERAL MAXIMAL OPERATOR

KYUNG-HWA KIM

1. Introduction

Let μ be a positive Borel measure on \mathbb{R}^n which is positive on cubes. For any cube $Q \subset \mathbb{R}^n$, a Borel measurable nonnegative function φ_Q , supported and positive a.e. with respect to μ in Q, is given. We consider a maximal function

$$M_{\mu}f(x) = \sup \int \varphi_{Q}|f|d\mu$$

where the supremum is taken over all φ_Q such that $x \in Q$.

This operator was studied in [6], [4], [5] in connection with the Muckenhaupt's Ap-condition [7], fractional maximal operator and sph-erical maximal function.

In this note we study some more properties of M_{μ} and some special cases.

Throughout this paper Q will denote a cube in \mathbb{R}^n with sides parallel to coordinate axes.

2. A condition related to the two-weight strong-type (p,q) inequality

In this section we first give a necessary condition for the two-weight strong-type (p,q) inequality for M_{μ} when p>1 and then we show that it is also a sufficient condition for the two-weight strong-type (p,∞)

Received October 21, 1994. Revised December 6, 1994.

AMS Subject Classification: 42B25.

Key words: maximal function, A_p -condition, two-weight strong type (p,q) inequality, weight.

Supported by Ewha Womans University Faculty Research Fund, 1991 and Ministry of Education-University Research Institute Support Program, 1993.

inequality for M_{μ} , restricted to dyadic cubes. The condition is a modification of Sawyer's condition [8].

Throughout this section w and ν are positive Borel measure on \mathbb{R}^n , positive on cubes.

PROPOSITION 1. If $\|M_{\mu}f\|_{L^q(w)} \leq C\|f\|_{L^p(\nu)}$ for p>1 and $q\geq 1$, then $\mu\ll \nu$ and

$$\left\| M_{\mu} \left(\varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \right\|_{L^q(w)} \le C \left\| \varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^p(\nu)} < \infty$$

for all $\varphi_{\mathcal{O}}$, where p' is the conjugate exponent of p.

Proof. First suppose it is not true that $\mu \ll \nu$. Then there exists a Borel set E such that $\nu(E) = 0$ but $\mu(E) > 0$. Let $f = \chi_E$. Then $\|f\|_{L^p(\nu)} = 0$ but $M_\mu f(x) > 0$ for all $x \in \mathbb{R}^n$. Therefore, $\|M_\mu f\|_{L^q(w)} > 0$ unless w = 0. So, we must have $\mu \ll \nu$.

unless w=0. So, we must have $\mu \ll \nu$. Now suppose $\|\varphi_Q^{p'-1}(\frac{d\mu}{d\nu})^{p'-1}\|_{L^p(\nu)} = \infty$ for some φ_Q . This means $\int \varphi_Q^{p'}(\frac{d\mu}{d\nu})^{p'}d\nu = \infty$. So, there exists $f_n \in L^p(\nu)$ such that $\|f_n\|_{L^p(\nu)} = 1$ and $\int f_n \varphi_Q \frac{d\mu}{d\nu} d\nu = \int f_n \varphi_Q d\mu \to \infty$ as $n \to \infty$. Since $M_\mu f_n(x) \geq \int f_n \varphi_Q d\mu$ for every $x \in Q$, $\|M_\mu f_n\|_{L^q(w)} \to \infty$ as $n \to \infty$. Since $\|f_n\|_{L^p(\nu)} = 1$ for every n, this shows

$$\left\| \varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^p(\nu)} < \infty \quad \text{for all} \quad \varphi_Q.$$

The inequality

$$\left\| M_{\mu} \left(\varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \right\|_{L^q(w)} \le C \left\| \varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^p(\nu)}$$

is obvious if we put $f = \varphi_Q^{p'-1}(\frac{d\mu}{d\nu})^{p'-1}$ in the hypothesis. \square

Now we write $M_{d,\mu}f$ for $M_{\mu}f$, restricted to dyadic cubes, that is,

$$M_{d,\mu}f(x) = \sup \int \varphi_Q|f|d\mu,$$

where the sup is taken over all φ_Q such that $x \in Q$ and Q is dyadic.

In the following, we restrict ourselves to the case when $\nu \ll \mu$ and to avoid the trivial special cases arising and for the simplicity, we assume that $\varphi_Q > 0$ a.e. on Q with respet to ν .

Throughtout this paper, p' denotes the conjugate exponent of p.

PROPOSITION 2. Suppose $\mu \ll \nu$ and for p > 1,

$$\left\| M_{d,\mu} \left(\varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \right\|_{L^{\infty}(w)} \le C \left\| \varphi_Q^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)} < \infty$$

for all Q. Then $||M_{d,\mu}f||_{L^{\infty}(w)} \leq C||f||_{L^{p}(\nu)}$.

Proof. Let $f \in L^p(\nu)$ and fix $\lambda > 0$. Consider $\Omega = \{M_{d,\mu}^R f > \lambda\}$, where $M_{d,\mu}^R f(x)$ is the $M_{d,\mu} f(x)$ restricted to the dyadic cubes with side length $\leq R$. If $M_{d,\mu}^R f(x) > \lambda$, then there exists a dyadic cube Q_x containing x such that side length of $Q_x \leq R$ and $\int \varphi_{Q_x} |f| d\mu > \lambda$. Then we have

$$\Omega = \cup_{x \in \Omega} \ Q_x.$$

Let $D = \{Q_x \mid x \in \Omega\}$. Then every cube in D is contained in some maximal cube in D and the maximal cubes are mutually nonoverlapping. Therefore, $\Omega = \bigcup Q_k$, where the Q_k 's are maximal cubes in D and so $\mathring{Q}_k \cap \mathring{Q}_j = \emptyset$ (\mathring{Q}_k denotes the interior of Q_k) if $k \neq j$ and $\int \varphi_{Q_k} |f| d\mu > \lambda$.

$$\lambda < \int \varphi_{Q_{k}} |f| d\mu = \int_{Q_{k}} |f| \varphi_{Q_{k}} \frac{d\mu}{d\nu} d\nu$$

$$\leq \left(\int_{Q_{k}} |f|^{p} d\nu \right)^{\frac{1}{p}} \left(\int_{Q_{k}} \varphi_{Q_{k}}^{p'} \left(\frac{d\mu}{d\nu} \right)^{p'} d\nu \right)^{\frac{1}{p'}}$$
by Hölder's inequality
$$= \left(\int_{Q_{k}} |f|^{p} d\nu \right)^{\frac{1}{p}} \left\| \varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)}^{\frac{p}{p'}} < \infty$$

from the hypothesis. For every k,

$$M_{\mu} \left(\varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \leq \int \varphi_{Q_{k}} \varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} d\mu \text{ on } Q_{k}$$

$$= \int \varphi_{Q_{k}}^{p'} \left(\frac{d\mu}{d\nu} \right)^{p'} d\nu \text{ since } \nu \ll \mu$$

$$= \left\| \varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)}^{p} \text{ on } Q_{k}.$$

So, since $w(Q_k) > 0$,

$$\left\| M_{\mu} \left(\varphi_{Q_k}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \right\|_{L^{\infty}(w)} \ge \left\| \varphi_{Q_k}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)}^{p}.$$

Since

$$\left\| M_{\mu} \left(\varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \right\|_{L^{\infty}(w)} \leq C \left\| \varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)} < \infty,$$

$$\left\| \varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)}^{p} \leq C \left\| \varphi_{Q_{k}}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)}$$

for every Q_k .

Therefore, since $\|\varphi_{Q_k}^{p'-1}(\frac{d\mu}{d\nu})^{p'-1}\|_{L^p(\nu)} \neq 0$,

$$\left\| \varphi_{Q_k}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^p(\nu)}^{p-1} \le C \quad \text{when} \quad p > 1$$

$$\le \frac{C}{\lambda} \|f\|_{L^p(\nu)} \left\| \varphi_{Q_k}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^p(\nu)}^{\frac{p}{p'}}$$

by (1). Since $0 < \|\varphi_{Q_k}^{p'-1}(\frac{d\mu}{d\nu})^{p'-1}\|_{L^p(\nu)} < \infty$, we have $1 \le \frac{C}{\lambda} \|f\|_{L^p(\nu)}$, i.e., $\lambda \le C \|f\|_{L^p(\nu)}$.

Since $\Omega = \bigcup Q_k$, this implies $||M_{d,\mu}^R f||_{L^{\infty}(w)} \leq C||f||_{L^{p}(\nu)}$. R is arbitrary. Therefore, we have $||M_{d,\mu} f||_{L^{\infty}(w)} \leq C||f||_{L^{p}(\nu)}$. \square

For any cube Q, let Q^d denote the smallest dyadic cube containing Q. Suppose there exist positive constants C_1 and C_2 , depending only on the measures s.t.

(2)
$$C_1 \varphi_{Q^d} \leq \varphi_Q \leq C_2 \varphi_{Q^d} \text{ on } Q.$$

Then for any cube Q containing x

$$\int \varphi_{Q}|f|d\mu \leq C_{2} \int \varphi_{Q^{d}}|f|d\mu \leq C_{2}M_{d,\mu}f(x)$$

Therefore,

$$M_{\mu}f(x) \leq C_2 M_{d,\mu}f(x)$$

Thus we have

PROPOSITION 3. Suppose (2) holds and assume $\mu \ll \nu$ and for p>1 and for all φ_Q

$$(3) \quad \left\| M_{\mu} \left(\varphi_{Q}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right) \right\|_{L^{\infty}(w)} \leq C \left\| \varphi_{Q}^{p'-1} \left(\frac{d\mu}{d\nu} \right)^{p'-1} \right\|_{L^{p}(\nu)} < \infty.$$

Then $||M_{\mu}f||_{L^{\infty}(w)} \leq C||f||_{L^{p}(\nu)}$.

EXAMPLE. Let $\varphi_Q(x) = \mu(Q)^{\frac{\alpha}{n}-1}\chi_Q$, where $0 \leq \alpha < n$. Then $M_{\mu}f(x) = \sup_{x \in Q} \mu(Q)^{\frac{\alpha}{n}-1} \int_Q |f| d\mu$ is the weighted fractional maximal operator. If μ satisfies the doubling condition, then for every cube Q

$$\varphi_{Q^d} \leq \varphi_Q \leq C_{\mu,n} \varphi_{Q^d}$$
 on Q ,

where $C_{\mu,n}$ is a constant depending only on μ and the dimension n. Therefore, in this case Proposition 3 holds and (3) reduces to the Sawyer's condition [8]. So we will put the Sawyer's theorem as a corollary.

COROLLARY. [8] Suppose μ satisfies the doubling condition and p > 1. If $0 \le \alpha < n$, define $M_{\mu,\alpha}f(x) = \sup_{x \in Q} \mu(Q)^{\frac{\alpha}{n}-1} \int_{Q} |f| d\mu$.

Then $\|M_{\mu,\alpha}f(x)\|_{L^{\infty}(w)} \leq C\|f\|_{L^{p}(\nu)}$ for all $f \in L^{p}(\nu)$ if and only if $\mu \ll \nu$ and $\|\chi_{Q}M_{\mu,\alpha}(\chi_{Q}(\frac{d\mu}{d\nu})^{p'-1})\|_{L^{\infty}(w)} \leq C\|\chi_{Q}(\frac{d\mu}{d\nu})^{p'-1}\|_{L^{p}(\nu)} < \infty$ for all cubes $Q \subset \mathbb{R}^{n}$.

3. $L^{p,q}$ norm inequality for the Hardy-Littlewood maximal operator

In this section we consider the special case when w and ν are equal weights and φ_Q is specifically given.

Let $d\mu = \mathbf{u}(x)dx$ where $\mathbf{u}(x)$ is a function s.t. $0 < \mathbf{u} < \infty$ a.e. with respect to the Lebesgue measure on \mathbb{R}^n .

We'll first give some definitions in [2].

DEFINITION 1. The nonincreasing rearrangement $g_{\mu}^{*}(t)$ of a function g with respect to the measure μ is defined as

$$g_{\mu}^*(t) = \inf \left\{ s \ : \ \mu(\{x \ : \ |g(x)| > s\}) \le t \right\}$$

DEFINITION 2. $L^{p,q}$ is the collection of all functions g with $||g||_{p,q;\mu} < \infty$, where

$$\|g\|_{p,q} = \|g\|_{p,q;\mu} = \left\{ \begin{array}{ll} (\frac{q}{p} \int_0^\infty (t^{\frac{1}{p}} g_\mu^*(t))^q \frac{dt}{t})^{\frac{1}{q}}, & 1 \leq p < \infty, \ 1 \leq q < \infty \\ \sup_{t > 0} t^{\frac{1}{p}} g_\mu^*(t), & 1 \leq p < \infty, \ q = \infty. \end{array} \right.$$

If $\varphi_Q(x) = \frac{1}{|Q|} \frac{\chi_Q(x)}{\mathbf{u}(x)}$, then $M_{\mu}f(x)$ becomes the ordinary Hardy-Littlew ood maximal function Mf(x) of f. Here |Q| denotes the Lebesgue measure of Q.

Let dw = w(x)dx and $\Phi(t) = \sup_{Q} \{w(Q)\varphi_{Q,\mu}^*(w(Q)t)\}.$

Then we have $\Phi \in L^{p',1}$ implies that $||Mf||_{L^p(w)} \leq C||f||_{L^p(\mu)}$. (For the proof, we refer to [6].

We now consider this Hardy-Littlewood maximal operator Mf for the single weight problem, i.e., when $w = \mu$. Throughout this section, the norms are all with respect to the measure $d\mu = \mathbf{u}(x)dx$.

DEFINITION 3. [7] We say $\mathbf{u} \in A_p$ if

$$\left(\int_{Q} \mathbf{u}(x) dx \right) \left(\int_{Q} \mathbf{u}(x)^{-\frac{1}{p-1}} dx \right)^{p-1} \le C|Q|^{p}$$
 if $1
$$\int_{Q} \mathbf{u}(x) dx \le C|Q| \text{ ess inf } \mathbf{u}(x)$$
 if $p = 1$,$

for any cube Q, where C is a constant independent of Q.

DEFINITION 4. [1] Suppose either $1 and <math>1 \le q \le \infty$ or p = q = 1. A nonnegative, locally integrable function $\mathbf{u}(x)$ is in A(p,q) if there exists a constant C such that for any cube Q,

$$\|\chi_Q\|_{p,q} \|\chi_Q \mathbf{u}^{-1}\|_{p',q'} \le C|Q|.$$

We note that $\mathbf{u} \in A(p,p)$ if and only if $\mathbf{u} \in A_p$. We now list some theorems in [1] as lemmas;

LEMMA 1. [1] If either $1 and <math>1 \le q \le \infty$ or p = q = 1, then $||Mf||_{p,\infty} \le C||f||_{p,q}$ implies $\mathbf{u} \in A(p,q)$.

LEMMA 2. [1] If $1 \le q \le p < \infty$, then $\mathbf{u} \in A(p,q)$ implies $||Mf||_{p,\infty} \le C||f||_{p,q}$.

LEMMA 3. [1] If $1 and <math>1 < q \le \infty$, then $\mathbf{u} \in A(p,q)$ implies $||Mf||_{p,s} \le C||f||_{p,s}$ for $1 \le s \le \infty$.

LEMMA 4. [1] If either $1 and <math>1 \le q \le \infty$ or p = q = 1, then $\mathbf{u} \in A(p,q)$ if and only if $\|Mf\|_{p,\infty} \le C\|f\|_{p,q}$.

Using the above Lemmas we are able to see the following propositions.

PROPOSITION 4. If either $1 and <math>1 \le q \le \infty$ or p = q = 1, then $||Mf||_{p,q} \le C||f||_{p,q}$ implies $\mathbf{u} \in A(p,q)$.

Proof. $||Mf||_{p,\infty} \leq ||Mf||_{p,q}$ for all $1 \leq p, q \leq \infty$.

So from Lemma 1 it holds. \square

From Lemmas 1 & 3 and from the fact $||Mf||_{p,\infty} \leq ||Mf||_{p,q}$ for every $1 \leq q \leq \infty$, we have,

PROPOSITION 5. For $1 and <math>1 < q \le \infty$, we have $||Mf||_{p,q} \le C||f||_{p,q}$ if and only if $\mathbf{u} \in A(p,q)$.

In [3] we have the following as a theorem.

" For $1 \le p \le q < \infty$ and $1 \le r \le \infty$, if μ is a doubling measure, then $\|Mf\|_{q,\infty;\mu} \le B\|f\|_{p,r;\nu}$ if and only if $\Phi \in L^{p',r'}$ $(0,\infty)$ "

From this fact, we know that for any $1 \leq p < \infty$ and $1 \leq q \leq \infty$, if μ is a doubling measure, then $||Mf||_{p,\infty;\mu} \leq B||f||_{p,q;\nu}$ if and only if $\Phi \in L^{p',q'}(0,\infty)$.

Therefore from Lemma 4, we can see the following relationship between A(p,q) condition and Φ .

PROPOSITION 6. If either $1 and <math>1 \le q \le \infty$ or p = q = 1 and if μ is a doubling measure, then $\mathbf{u} \in A(p,q)$ if and only if $\Phi \in L^{p',q'}(0,\infty)$.

ACKNOWLEDGEMENT. I would like to thank the referee for careful proofreading.

References

- 1. Huann-Ming Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood Maximal Function on L(p,q) Spaces with Weight, Indiana Univ. Math. Journal 31 (1982), 109-120.
- 2. R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 247-275.
- 3. K. Kim, Two-Weight L(p,q) Norm Inequalities for a General maximal Operator, J. of Korean Research Institute for Better Living, 47 (1991), 7-12.
- M. Leckband, Two-weight mixed norm inequalities for maximal operators and extrapolation results for the fractional maximal operator, Studia Math. 87 (1987), 167-180.
- M. Leckband, A note on the spherical maximal operator or radical functions, proc. Amer. Math. Soc. 100 (1987), 635-640.
- M. Leckband and C. J. Neugebauer, A general maximal operator and the Ap-con dition, Trans. Amer. Math. Soc. 275 (1983), 821-831.
- B. Muckenhaupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- 8. E. Sawyer, A characterization of two-weight norm inequalities for maximal operators, Studia Math. 75 (1982), 1-11.

Department of Mathematics Ewha Womans University Seoul 120-750, Korea