• Title/Summary/Keyword: Bonding Process

Search Result 1,245, Processing Time 0.034 seconds

Process design of superplastic forming/diffusion bonding by using pressure control (압력제어를 이용한 초소성 성형/확산접합의 공정설계)

  • Song, J.S.;Kang, K.Y.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.332-335
    • /
    • 2007
  • The superplastic forming (SPF) has been widely used in the automotive and aerospace industry because it has great advantages to produce very light and strong components. Finite element method (FEM) is used to model the process of superplastic forming/diffusion bonding (SPF/DB), to predict the pressure-time curve and to analyze the process parameter. In this study, process design of SPF/DB is carried out a 3-sheet sandwich part. SPF/DB process with pressure control was analyzed by using finite element method. For obtaining proper shape, step-by-step pressurization is proposed. The first step of SPD/DB process is obtained by applying of pressure in patches. From the next step it applied pressure to all regions (between inner sheets, between inner and face sheets). By using the proposed pressurization scheme, deficit in part shape is found to be eliminated.

  • PDF

Study of micro flip-chip process using ABL bumps (ABL 범프를 이용한 마이크로 플립 칩 공정 연구)

  • Ma, Junsung;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • One of the important developments in next generation electronic devices is the technology for power delivery and heat dissipation. In this study, the Cu-to-Cu flip chip bonding process was evaluated using the square ABL power bumps and circular I/O bumps. The difference in bump height after Cu electroplating followed by CMP process was about $0.3{\sim}0.5{\mu}m$ and the bump height after Cu electroplating only was about $1.1{\sim}1.4{\mu}m$. Also, the height of ABL bumps was higher than I/O bumps. The degree of Cu bump planarization and Cu bump height uniformity within a die affected significantly on the misalignment and bonding quality of Cu-to-Cu flip chip bonding process. To utilize Cu-to-Cu flip chip bonding with ABL bumps, both bump planarization and within-die bump height control are required.

Evaluation of Welding Soundness of Titanium-Copper Explosive-Bonded Dissimilar Clad Plate by TIG Welding (타이타늄-구리 폭발압접 이종 클래드 판재의 TIG 용접 건전성 평가)

  • Jo, Pyeong-Seok;Youn, Chang-Seok;Hwang, Hyo-Woon;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.66-74
    • /
    • 2021
  • Cladding material, which can selectively obtain excellent properties of different metals, is a composite material that combines two or more types of dissimilar metals into one plate. The titanium-copper cladding material between titanium which has excellent corrosion resistance and copper which has high thermal and electrical conductivity, are highly valuable composite materials. It can be used as heat exchangers with high conductivity under severe corrosion conditions. In order to apply the clad plate to the heat exchanger, it must be manufactured in the form of a tube and additional welding is required. It is important to select the cladding material manufacturing process and the welding process. The process of manufacturing the cladding material includes extrusion, rolling, and explosive bonding. Among them, the explosive bonding process is suitable for additional welding because no heat-affected zone is formed. In this study TIG welding of the explosive-bonded dissimilar clad plates was successfully performed by butt welding. The microstructures and bonding interface of the welded part were observed, and the effect of the bonding layer at the welding interface and the intermetallic compounds on the mechanical properties and tensile plastic deformation behaviors were analyzed. And also the integrity of TIG-welded dissimilar part was evaluated.

A study on PDMS-PMMA Bonding using Silane Primer (실란 프라이머를 이용한 PDMS-PMMA 접착)

  • Kim, Kang-Il;Park, Sin-Wook;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1480-1481
    • /
    • 2008
  • In this paper, we present surface treatments for achieving bonds between PMMA and PDMS substrates. Silane primer is used for the formation of hydroxyl group on PMMA surfaces. The formed hydroxyl groups enhance the bonding strength of PDMS-PMMA substrates without channel clogging and structure deformation. The bonding strength on the different surface treatments (include oxygen plasma, 3-APTES, and corona discharge) is evaluated to find optimal bonding condition. The maximum bonding strength at the optimal surface treatment is over 300 kPa. The surface treatment using silane primer can be used to the bonding process of Micro-TAS and Lab-on-a-Chip.

  • PDF

Sodalime-sodalime Electrostatic Bonding using Amorphous Silicon Interlayer and Its Application to FEA Packging (비정질 실리콘 박막을 이용한 Sodalime-Sodalime 정전 열 접합 및 FEA Packaging 응용)

  • Ju, Byeong-Kwon;Lee, Duck-Jung;Choi, Woo-Beom;Kim, Young-Cho;Lee, Nam-Yang;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.656-661
    • /
    • 1999
  • As a fundamental study for FED tubeless packaging, sodalime-sodalime electrostatic bonding was performed by using on the developed bonding mechanism. Thebonding properties of the bonded sodalime-sodalime structure were investigated through SEM and SIMS analyses. Mo-tip FEA was vacuum-packaged by the developed bonding process and the packaged device generated the field emission current.

  • PDF

Characteristics of copper wire wedge bonding

  • Tian, Y.;Zhou, Y.;Mayer, M.;Won, S.J.;Lee, S.M.;Cho, S.Y.;Jung, J.P.
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.34-36
    • /
    • 2005
  • Copper wire bonding is an alternative interconnection technology that serves as a viable and cost saving alternative to gold wire bonding. In this paper, ultrasonic wedge bonding with $25{\mu}m$ copper wire on Au/Ni/Cu metallization of a PCB substrate was performed at ambient temperature. The central composite design of experiment (DOE) approach was applied to optimize the copper wire wedge bonding process parameters. After that, pull test of the wedge bond was performed to study the bond strength and to find the optimum bonding parameters. SEM was used to observe the cross section of the wedge bond. The pull test results show good performance of the wedge bond. Additionally, DOE results gave the optimized parameter for both the first bond and the second bond. Cross section analysis shows a continuous interconnection between the copper wire and Au/Ni/Cu metallization. The diffusion of Cu into the Au layer was also observed.

  • PDF

MicroLED Transfer, Bonding, and Bad Pixel Repair Technology (마이크로 LED 전사, 접합, 그리고 불량 화소 수리 기술)

  • Choi, K.S.;Eom, Y.S.;Moon, S.H.;Yun, H.G.;Joo, J.;Choi, G.M.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.53-61
    • /
    • 2022
  • MicroLEDs have various advantages and application areas and are in the spotlight as next-generation displays. Nevertheless, the commercialization of microLEDs is slow because of high cost as well as difficulties in the transfer, bonding, and bad pixel repairing process. In this study, we review the development trends of transfer, bonding, and defective pixel repair technologies, which are critical for microLED commercialization, focusing on materials that determine these technologies. In addition, we focus on the simultaneous transfer bonding technology developed by the Electronics and Telecommunications Research Institute, which has been attracting enormous research attention recently.

DEVELOPMENT OF HYPER INTERFACIAL BONDING TECHNIQUE FOR ULTRA-FONE GRAINED STEELS

  • Kazutoshi Nishimoto;Kazuyoshi Saida;Jeong, Bo-young;Kohriyama, Shin-ichi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.776-780
    • /
    • 2002
  • This paper describes the concept and the characteristics of hyper interfacial bonding developed as a new concept joining process for UFG (ultra-fine grained) steel. Hyper interfacial bonding process is characterized by instantaneous surface melting bonding which involves a series of steps, namely, surface heating by high frequency induction, the rapid removing of heating coil and joining by pressing specimens. UFG steels used in this study have the average grain size of 1.25 ${\mu}{\textrm}{m}$. The surface of specimen can be rapidly heated up and melted within 0.2s. Temperature gradient near heated surface is relatively steep, and peak temperature drastically fell down to about 1100K at the depth of 2~3mm away from the heated surface of specimen. Bainite is observed near bond interface, and also M-A (martensite-austenite) islands are observed in HAZ. Grain size increases with increasing heating power, however, the grain size in bonded zone can be restrained under 11 ${\mu}{\textrm}{m}$. Hardened zone is limited to near bond interface, and the maximum hardness is Hv350~Hv390.

  • PDF

Fabrication and Challenges of Cu-to-Cu Wafer Bonding

  • Kang, Sung-Geun;Lee, Ji-Eun;Kim, Eun-Sol;Lim, Na-Eun;Kim, Soo-Hyung;Kim, Sung-Dong;Kim, Sarah Eun-Kyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.29-33
    • /
    • 2012
  • The demand for 3D wafer level integration has been increasing significantly. Although many technical challenges of wafer stacking are still remaining, wafer stacking is a key technology for 3D integration due to a high volume manufacturing, smaller package size, low cost, and no need for known good die. Among several new process techniques Cu-to-Cu wafer bonding is the key process to be optimized for the high density and high performance IC manufacturing. In this study two main challenges for Cu-to-Cu wafer bonding were evaluated: misalignment and bond quality of bonded wafers. It is demonstrated that the misalignment in a bonded wafer was mainly due to a physical movement of spacer removal step and the bond quality was significantly dependent on Cu bump dishing and oxide erosion by Cu CMP.

Evaluation of Shear Bond Strength of Various Orthodontic Bracket Bonding Agents (수종의 교정용 브라켓 접착 레진의 전단 강도 평가)

  • Youngjun, Ham;Miran, Han
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.264-273
    • /
    • 2022
  • Due to the development of properties of adhesive materials currently used in dentistry, the bonding ability between the brackets and the tooth enamel has been greatly improved. In general, in situations where cooperation can be obtained, adhesion of the orthodontic bracket through the conventional three-step process can show excellent bonding strength. However, if it is difficult to expect patient cooperation, as in the pediatric dentistry area, or if moisture isolation is not properly performed, the binding strength that does not reach the expected effect. As a result, various products that simplify the process for adhesion are being developed. The aim of this study was to evaluate and compare the shear bonding strength between the conventional 3-step adhesion system, self-etching primer system and one-step adhesion system that reduces the priming process. A total of 60 human maxillary, mandibular premolars were prepared. Group I (control group) were followed conventional 3-step bonding process. Group II were conditioned with self-etching primer. Group III were etched with 37% phosphoric acid and brackets were bonded with self-priming adhesive. The resultant shear bond strength of each group was measured and an adhesive remnant index (ARI) was recorded. The mean shear bond strength of group I, II, III were 14.69 MPa, 11.21 MPa and 12.21 MPa respectively. Significant differences could only be found between group I, II and group I, III (p < 0.05). The ARI indicated no significant difference among all groups.