• Title/Summary/Keyword: Bloch spaces

Search Result 46, Processing Time 0.019 seconds

TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND A GENERALIZATION OF BLOCH-TYPE SPACES

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.439-454
    • /
    • 2014
  • We deal with the boundedness of the n-th derivatives of Bloch-type functions and Toeplitz operators and give a relationship between Bloch-type spaces and ranges of Toeplitz operators. Also we prove that the vanishing property of ${\parallel}uk^{\alpha}_z{\parallel}_{s,{\alpha}}$ on the boundary of $\mathbb{D}$ implies the compactness of Toeplitz operators and introduce a generalization of Bloch-type spaces.

WEIGHTED BLOCH SPACES IN $C^n$

  • Kyong Taik Hahn;Ki Seong Choi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.177-189
    • /
    • 1998
  • In this paper, weighted Bloch spaces $B_q (q > 0)$ are considered on the open unit ball in $C^n$. These spaces extend the notion of Bloch spaces to wider classes of holomorphic functions. It is proved that the functions in a weighted Bloch space admit certain integral representation. This representation formula is then used to determine the degree of growth of the functions in the space $B_q$. It is also proved that weighted Bloch space is a Banach space for each weight q > 0, and the little Bloch space $B_q,0$ associated with $B_q$ is a separable subspace of $B_q$ which is the closure of the polynomials for each $q \geq 1$.

  • PDF

COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES

  • Tong, Ce-Zhong;Zhou, Ze-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.125-135
    • /
    • 2014
  • We study the compact intertwining relations for composition operators, whose intertwining operators are Volterra type operators from the weighted Bergman spaces to the weighted Bloch spaces in the unit disk. As consequences, we find a new connection between the weighted Bergman spaces and little weighted Bloch spaces through this relations.

BERGMAN SPACES, BLOCH SPACES AND INTEGRAL MEANS OF p-HARMONIC FUNCTIONS

  • Fu, Xi;Qiao, Jinjing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.481-495
    • /
    • 2021
  • In this paper, we investigate the properties of Bergman spaces, Bloch spaces and integral means of p-harmonic functions on the unit ball in ℝn. Firstly, we offer some Lipschitz-type and double integral characterizations for Bergman space ��kγ. Secondly, we characterize Bloch space ��αω in terms of weighted Lipschitz conditions and BMO functions. Finally, a Hardy-Littlewood type theorem for integral means of p-harmonic functions is established.

WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES

  • LI SONGXIAO
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • In this paper we study bounded and compact weighted composition operator, induced by a fixed analytic function and an analytic self-map of the open unit disk, from Bergman space into weighted Bloch space. As a corollary, obtain the characterization of composition operator from Bergman space into weighted Bloch space.