J. Korean Math. Soc. 45 (2008), No. 1, pp. 229-248

VOLTERRA COMPOSITION OPERATORS BETWEEN
WEIGHTED BERGMAN SPACES AND BLOCH TYPE
SPACES

SonGgx1a0 L1

ABSTRACT. The boundedness and compactness of the Volterra composi-
tion operators between weighted Bergman spaces and Bloch type spaces
are discussed in this paper.

1. Introduction

Let D be the open unit disk in the complex plane C and let H(D) be the
space of analytic functions on D. An analytic function f on D is said to belong
to the Bloch type space B, if

B(f) = sup(1 — |21*)°|f'(2)] < o0.
z€D

The expression B(f) defines a seminorm while the natural norm is given by
IFllge = [£(0)] + B(f). Let BS denote the subspace of B consisting of those
f € BP for which (1 — |2[*)?|f(z)] — 0 as |z] = 1. This space is called the
little Bloch type space.

Let dA denote the normalized Lebesgue area measure in the unit disk D
such that A(D) = 1. For 0 < p < o0, @ > —1, the weighted Bergman space
AP consists of those f € H(D) for which

||f“ig = /D [F(2)P(1 = |2]))*dA(2) < .

Throughout the paper ¢ denotes a nonconstant analytic self map of the unit
disk D. Associated with ¢ is the composition operator C,, defined by

Cof =Ffop

for f € H(D). It is interesting to provide a function theoretic characterization
of when ¢ induces a bounded or compact composition operator on various
spaces (see, for example, [5, 14, 21)).
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Suppose that g : D — C! is a holomorphic map and f € H(D), the Volterra
type operator J, (see [15]) or the Riemann-Stieltjes operator (see [18]) is defined
by

/ f(&)g'(&)d¢, z€D.

The companion operator I, (see [19]) is defined as

/ f(&)g(&)dE, ze€D.
The importance of the operators J, and I, comes from the fact that

Jof +1f = My f — f(0)g(0),

where the multiplication operator M, is defined by

(Mgf)(2) = g(2)f(2), feH(D), z€D.

In [13] Pommerenke introduced the operator J, and showed that J, is a bounded
operator on the Hardy space H? if and only if g € BMOA. Aleman and Siskakis
studied the integral operator J, on the Hardy space H? (see [2]) and then on
the Bergman space (see [3]). Recently, the operators J, and I, acting on vari-
ous function spaces, including Bloch spaces, weighted Bergman spaces, BMOA
and VMOA spaces, have been studied. See [1, 2, 3, 7, 8, 15, 16, 18, 19] and the
related references therein.

In this paper, we consider the Volterra composition operators which defined
as

) (oo F)(2) = / (Fow)(E)(g o 0) (€)de
and
@) (o f)(2) = / (f 0 0)'(€)(g 0 P)(E)de.

When ¢(z) = z, then Jy, = Jg, I, = I;. When g =1, then I, = C,.
Therefore we can regard the operators J, , and I, as the generalization of
composition operator C, and J,,I;. In addition, these operators are closely
related with the product of composition operator and Volterra type operator.
Since the parameter g is free, if we replace g o ¢ by g we obtain the products
JyCp and I,C,. Here

(1,Cof)(2) = / (Foe)(©)d (€)de
and .
(I,Cof)(z) = /0 (f o 0)'(€)g(€)de.

Therefore we can obtain the characterizations of boundedness and compactness
of the operators J,C,, and I,C, by modifying all results stated for J,; , and
1, , respectively.
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Moreover, C,.Jy — Jg., and C,I, — I, , are constants. In fact, we see that
the following two equalities hold.

©(0)
Joof(2) = (Cody f)(2) ~ / F(6)g'(€)de

and

»(0)
Lo F(2) = (CoI, )(z) - / F(©)g(e)de.

In this paper we combine the composition operators and Volterra type
operators and characterize the boundedness and compactness of the opera-
tors Jy o, Iy, between weighted Bergman spaces and Bloch type spaces. As
some corollaries, we obtain the characterizations of composition operator and
Volterra type operator between the weighted Bergman space and the Bloch
type space. Moreover we provide a unified way of treating these operators.

Throughout this paper, constants are denoted by C, they are positive and
may differ from one occurrence to the other. The notation A < B means that
there is a positive constant C such that C~1B < 4 < CB.

2. The boundedness and compactness of Jg,, : AP — B8

In this section, we characterize the boundedness and compactness of the
operator J, , : A2 — BB(BS). First, we give some auxiliary results which are
incorporated in the following lemmas.

Lemma 1. Let 0 <p< oo and o> —1. If f € AR, then

/12

(——a
6 S O s

Proof. Let 8(z,w) denote the Bergman metric between two points z and w in
D. 1t is given by

1+ |z (w)]

1 — |z (w)

For a € D and r > 0, the set D{a,r) = {z € D : B(a,2) < r} is a Bergman
metric disk with center a and radius r. It is well known that (see [21])

Bz, w) = ; log

(1—la)? _ 1 = 1 - 1
[T-azl* 7 (1-[2/? " (1~1al?)? " |D(a,r)|’
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when z € D(a,r). For 0 < r < 1 and z € D, by the subharmonicity of |f(2)|?,
we get

P ¢ a)PdA(a
SOF < gy [, f@FdA@

< ﬁ%—; [ a-lpris@pda

D(z,r)
ClIfIs
DR
from which we get the desired result. d

By the similar arguments and using the well known asymptotic formula (see
[21, 22])

/ FEPA~ 2P)*dAG) < |[FO)F + / £ (2)P(1 - |22)2PdA(2),
D D
we obtain the following lemma.

Lemma 2. Assume that p > 0 and o > —1. Let f € A2. Then there is a
positive constant C independent of f such that

/1142

L=z 5

If'(2)l<C

The following lemma was proved in [11]. For the case 8 = 1, the lemma was
proved in [10].

Lemma 3. Let § > 0. A closed set K in Bg s compact if and only if it is
bounded and satisfies
lim sup (1 —|2[*)?|f'(2)| = 0.
|z|—1 fex
The following criterion for compactness follows from standard arguments
similarly, for example, to those outlined in Proposition 3.11 of [5].

Lemma 4. Let ¢ be an analytic self-map of the unit disk and g € H(D). As-
sume that 0 < p, B < 0o and a > —1. Then the operator I, ,(or Jg,): AL —
BP(BP — AR) is compact if and only if I, ,(or Jy,): AR, — BP(BP — AR) is
bounded and for any bounded sequence (fi)ren in AR (BP) which converges to
zero uniformly on compact subsets of D, I ,fx = 0 (Jg.ofe = 0) in BA(A4P)
as k — oo.

Theorem 1. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p, < o0 and a > —1. Then,
(a) J,p 2 AR, = BP is bounded if and only if
’ 1— 2\8
Q sup FENEZBLIR 5 ))) < o
€D (1—|p(2)]*)7®
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(b) Jg.p : AR — BY is bounded if and only if Jg.o + AB, = BP is bounded and
(4) lim |g'((2)|le'(2)I(1 = [2*)? = 0.

|z]—1
Proof. (a). First, assume that (3) holds. Let f € A2. By Lemma 1 we have
(g0 /) (211 = |2[%)7 [f(e(llg' ()" ()] — [2*)°

Wl o
< O Pl Gl 10— o)
/ . 2\8
5) = Ol LRI =D G,

(1 =lp(x)[?) 7

From (5) and (J;,f)(0) = 0, we see that J, , : A2 — B? is bounded.
Conversely, assume that J, ,, : A2 — B? is bounded. For w € D, set

a2
) fuls) = (o)

It is easy to check that f,, € A%, and moreover sup,cp || fullaz < C. Hence

we have
(L= BRI,
g (o))
(A=l "

2+a
P

[foa) (NI = 12?9 (9 (Nl (2)]

(g foi2)) (2)I(1 = |2%)°
(7) “Jg,i/’f&p(z)i BA < C”Jg,cp I
Taking the supremum in (7) over z € D, we obtain (3).

(b). If J,, : AP — B is bounded, then it is clear that J, , : 42 — B® is
bounded. Taking f(z) = 1, we get (4).

Conversely, suppose that J, ., : A2 — B is bounded and (4) holds. For
each polynomial p(z) the following inequality holds

(1~ 2P 1(Jgep) () = Iple(DI(L = |21%)P1g (p(2))]¢' ()]
< ML= 2719 (e())le' (2)],
where M, = sup,p [p(2)|. Since M, < co and (4) holds, we obtain that for

each polynomial p, Jy .(p) € Bg . The set of all polynomials is dense in AZ,
thus for every f € AP there is a sequence of polynomials (pg)ren such that
llpx — fllaz — 0 as k = oo. Hence

IA

| g.oPr — g0 fllBs < HJg,ollaz 55| lDx — fllaz =0 ask — oo,

since the operator J,,,, : A2 — BP is bounded. Since B is the closed subset of
B?, we see that J, ,(A®) C BS. This completes the proof of Theorem 1. [

Theorem 2. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p, 8 < 00 and « > —1. Then,



234 SONGXIAO LI

a) J,., : AL = BB is compact if and only if
g, a

(8) M = sup(1 — [2*)?|g'(p(2)ll¢' (2)] < 00
z€D

@I PP
©) Iw(lz)l—u (1- I‘P(Z)lz)HTQ g'(p(2)] = 0;

(b) Jg,, : A2 — Bg s compact if and only if

. 1— 1228 (2
tim L= EDIEEN 5 ) < 0
=121 (1= Jo(2)?) >
Proof. (a) Assume that the conditions (8) and (9) hold. We have that there is
an rg € (0,1) such that

1—212)%|¢ (2

CoED ] ) <«

(1—le(z)]*)
for every |p(z)| > ro. Moreover, it is easy to see that (3) holds. Hence Jg , :
AP — BP is bounded. Let (fx)ren be a norm bounded sequence in AP such
that fr — 0 on compact subset of D as k — oo. It follows that

|(Jg.0f1) (2)I(1 = |2]*)°
| Fe(o(2))lg" ()¢ (2)1(1 = |2]*)?

(10)

f

< sup file(2)] sup (121389’ (e())]@(2)]
le(2)i<ro (=)l <ro
o' (2)](1 = |2*)?
C b4 Tta
+C||frllaz o (L o) g'(p(2))]
< M sup |fu(e(2))| +€Cl frll az

le(2)|<ro

for sufficiently large k. Taking the supremum in the above inequality over z € D
and letting £ — oo we obtain that ||J,, f|lgs = 0 as & = oco. Hence, by
Lemma 4, we see that the operator J, , : A2 — B? is compact.

Conversely, suppose J, ., : A2 — BP is compact. Then it is clear that
Jg o AP — BP is bounded. Taking f = 1, we get (8). Let (zx)ren be a
sequence in D such that limg_, o |(21)] = 1. Let

1—Jp(z)® \ 5=
(11) fulz) = (—_|T|2) .

(1 —p(2k)2)
Then fi € AP, moreover sup,cy || frllaz < C and fr converges to 0 uniformly
on compact subsets of D as k — oo. Since J,, is compact, by Lemma 4 we
have

HJgofellgs =0 as k — oo.
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Similarly to the proof of Theorem 1, we have
g0 frlls = t}gg(l = 12*)° 1Ty f1)' (2)]

L' (21 = [2)”
> 2+a Z 3
I e A

i.e., we get

/ 2
klggc 2 Eld lz}ia 9" (p(2))] = 0.
(1= lp(zx)?) 7
Then the result follows,
{(b). Now assume that (10) holds. It follows from Lemma 3 that J, , : AR, —
BS is compact if and only if

lim sup (1= [2[*)°|(Jy0 ) (2)] = 0.
2l f]4p <1

By Lemma 1 we have

. (2 z
(rae @I~ 121 < il EEEED oy,
(1= lp(2)]) 5"
Therefore (10) implies that J; , : AF = BO is compact.
Conversely, quppoqe that J,, : A% — Bj is compact. Then it is clear that
Jy.o : AL — BY is bounded and J, , : A% — B is compact. Hence by (a) and
Theorem 1, we have

' ()] = |Z¥ )

(12 S e =0
and
(13) T, 911~ sl (pl)] = 0.

By (12), for every £ > 0, there exists an r € (0,1),

o' (A = |27,
Ddcr ()
TEEETE

when r < |p(z)}] < 1. By (13}, there exists a o € {0, 1),
24
lg' (DI (2)1(1 = [e*) < (1=r*) 75 e
when o < |z] < 1.
Therefore, when o < |z| < 1 and r < |p(z)] < 1, we have that

o' (2)I(1 — [2[*)°

(14) lﬂl(p(z)lz)aig l9'((= )|‘<5
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If 0 < |2| < 1and |p(z)| <, then we obtain

¢/ (2)|(1 = [2[*)* 1 , '

(1— |p(2)]2) 5 l9'(e(2))l < mfa (@)l (21— |27)°
(15) < €.
Combining (14) with (15), we obtain (10). o

Corollary 1. Let g € H(D). Assume that 0 < p, < o0 and o > —1. Then,
(a) J, : AL — BP is bounded if and only if

2o

sup(1 = |2*)P 777" g/ ()] < oo;

Z€D
(b) J, : AR — BE is bounded if and only if J, : AL, — BP is bounded and
g€ B{f .
Corollary 2. Let g € H(D). Assume that 0 < p, < 0o and a > —1. Then
the following stotements are equivalent:
(a) J, : AR — BP is compact,
(b) J, - A2, — Bg 18 compact;
(c)
lim (1 - |2*)°~ 5 |g'(2)] = 0.
|z]—=1
Remark 1. If § < 2£2, then J, : A% — B is bounded if and only if g = const
by the maximal module principle. Similarly, if # < ”T“, then J, : AR, — BP is
compact if and only if g = const.

3. The boundedness and compactness of I, : AL — BA(B)

In this section, we characterize the boundedness and compactness of the
operator I, , : AL, — BB(Bg).

Theorem 3. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p,f < o0 and & > —1. Then,
(a) I,,, : AR — BP is bounded if and only if

up L=V I )
e (1 - fp(a) ) 5

(b) Iy, : AL — Bg is bounded if and only if I, , : AR, — BP is bounded and
ar) lim (1= )1 (o) = 0

(16) lg((2))] < o0;

Proof. {a) From {2) we see that
g0 £)'(2) = ¥ (2)g(0(2)) f' (1p(2)).
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Let f € AP. We have
(g ) (2L = 2%)°

(1= =PI (@) (2)lg(e(2))]

(1-|2%)#
o .
(1 =lp(2)1?) >
From the above inequality, the condition (16) and (I, f)(0) = 0 show that the
operator I, , : AP, — B? is bounded.
Suppose that I, , : A, — B? is bounded, i.e., there exists a constant C' such
that

IA

oo fllss < Cllfllaz
for all f € AP. Taking f(z) = 2, we get

(18) sup(1 = [21*)°|¢' (2)[]g(0(2))] < oo.
ze€D

Let f,(z) be defined by (6). From the proof of Theorem 1, we see that f.,(z) €
AP . Hence we have
(1 - 2Pl (2)lle(2)
24
1= le)P) 7
For r € (0,1), when |¢(2)| <7, then

(1= [2?)%l¢' (2)] 1

ey Tlolp(l < —— =5y
(1=1le(2)?) > (1-r)5

When |p(z)| > 7, then

(1~ 121)°]¢' (2)] 1(1- 2Pl (lle(2)]
(1 _ I(,O(Z)|2)Bp_g+ll ( (z )| < r (1 B [(p |2 2+a+1 [ ( ( ))I
From (18), (19), (20} and (21) we get the desired result.

(b) Assume that I, , : A — BY is bounded. It is clear that I, : A% — B?
is bounded. Taking f(z) = z € A%, we obtain

o, (1= 2Pl (2)llg(w(2))] = 0.

Conversely, assume that I, : A2 — B is bounded and (17) holds. For
each polynomial p(z), we have that

(1= 121 1(I,ep)' ()] < (1= |21 ()l g((D)IP (0(2))],

from which it follows that I, ,p € Bg . Since the set of all polynomials is
dense in AP, we have that for every f € A? there is a sequence of polynomials
(Pn)nen such that ||f — pnll4z = 0, as n — oco. Hence, by the boundedness of
the operator I, , : A2, — BP, we have

”Ig,cpf - Ig,gopn“BB < “IgprAZ—)BB“f “pn”A‘; -0

(19) o(o(=))] < Clllyo Foollss < ClTolll foiollaz-

(1= 1?1 (2)llg(())]-

(21
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as n — oo. Since B is the closed subset of B?, we obtain
I,,(A%) C Bf.
Therefore I, , : AL — Bg is bounded. O

Theorem 4. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p, < oo and @ > —1. Then,
(a) Iy, : A2, — BP is compact if and only if

(22) H = sup(1 - [2])’1¢' (2)llg(¢())] < o0
z€D

and

(1—12)Pl¥'(2) N
lp(2)|—=1 (1 _ |<P(Z)|2)¥+l lg(w(z))l = 0;

(b) Iy, : AR — Bg is compact if and only if

o) i (L= BV 2C)
91 (1 fp(z)[) 5T

Proof. (a) Suppose that the conditions (22) and (23) hold. Then it is clear that
(16) holds. Hence I, : A, — B? is bounded. Let (fi)ren be a sequence in
AP such that supgep || frllaz < L and fi converges to 0 uniformly on compact
subsets of D as & = co. By the assumption, for any ¢ > 0, there is a § € (0,1),
such that § < |p(2)} < 1 implies

— 12|28,
(1= lp(2)) 7+

(23)

lg((2))| = 0.

Then, we have
11,0 fillgs = sup (I, fx) (2)|(1 — |2*)P
zeD
= sup(l- 121%)2 1" (2)|| fi (o))l (e (2))]
= sup (1= 23?1’ (2)|| fr(0(2)]|g(e(2))]
(2D (z)| <6}

(25) +  sup (L= PPl (2)llg(e()I fi ()]
{zeDilp(2)[>8}

sup  H|fi((2))l
{z€Dilp(2)|<5}
(1= 21?7l (2)

+ sup 19| frll az -
{zeDile(2)[>8} (1 — |p(2)[?) 55" H!

IA

Since fi converges to 0 uniformly on compact subsets of D as k — oo, Cauchy’s
estimate gives that fi — 0 as £ — co on compact subsets of D. Hence, letting
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k — oo in (25) we obtain
Jin (g fillge = 0.
—+00

From this and applying Lemma 4 the result follows.
For the converse, assume that I, : A%, = BP is compact. Taking f(z) = z,
we get (22). Let (2x)ren be a sequence in D such that limg_, oo |p(21)| = 1. Let

1—Jp(ze)? |55

(1 - o(2r)z)
Then fi € AE, moreover supey ||fxllaz < C and fi converges to 0 uniformly
on compact subsets of D as k — oo. Since I, , is compact, by Lemma 4, we
have limg—o0 || 14,0 fillge = 0. From this and since

.o frllse = sgg(l—lzl2)"!(lg,¢fk)’(z)[

(1= |27 1" (20l filo20)) 9 (o (28)]
2+ 0 (1= |2?)l' i)l ()|
24a | ( ('Z )7
D (1 _ |<P(Zk,)|2)T+1 g\ k) |

v

we have that

1—]z:2)8¢ (2
tim LD ) < 0
0 (1= [p(ze)?)
Then (23) follows.
(b) First we assume that (24) holds. It follows from Lemma 3 that I, :
AP — BY is compact if and only if
lim sup (1-|22)?|(I,,f) (2)| = 0.
21211 £)l 42 <1

Since

— 121281,
(1= 22| (Ey 1) ()] < DL i il
1 -le)) 7 *
from the assumption, we get the desired result.
Conversely, we assume that I, , : A2 — Bg is compact. Then I, , : A% —
35 is bounded and I, : A%, — B is compact. Hence by (a) and Theorem 3
we have

(27) tim (1~ |=%)°1¢' (A lo(p(2)] = 0

and

(=)o) )
le(2)l=1 (1 — |<p(z)|2)%+l l9(¢(2))] = 0.

From (27) and (28), using the similar methods of the proof of Theorem 2, we
obtain the desired result. g

(28)
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From Theorems 3 and 4, we can easily arrive at the following corollaries (see
9, 17)):

Corollary 3. Let ¢ be an analytic self-map of the unit disk. Assume that
0<p,B <0 and a> —1. Then,
(a) Cy, : AR, — BP is bounded if and only if
(1= 12))°l¢'(2)]
e (1= [p(z)[2) 5 F

b C(O : Aja — BO 7;3 bounded ’” and Only n C(g . Aia - B is bounded and
%2 S BO .

Corollary 4. Let ¢ be an analytic self-map of the unit disk. Assume that
0<p,f <oo and a > —1. Then,
(a) C, : AR — BP is compact if and only if p € B® and

(L= PPl () _
P11 (1 - Jp(2)2)

(b) Cy, : AP, — Bg is compact if and only if

A -1l ()] _

121 (1 — |(2)]2) 35

Corollary 5. Let g € H(D). Assume that 0 < p, < oo and a > —1. Then,
(a) I, : AP, — BP is bounded if and only if
sup(1 — [2[")* 7= 5% g (2)] < oo;
z€D
(b) I, : A% — BP is bounded if and only if I, : A?, — BP is bounded and
limy,) 51 (1 = [2[%)Plg(2)] = 0.

Corollary 6. Let g € H(D). Assume that 0 < p,8 < o0 and o > —1. Then
the following statements are equivalent.
(a) I, : A — BP is compact;
(b) I, : AR — B2 is compact;
(c)
lim (1 - [2*)°~ =% g(2)| = 0.
|z]|—1
Remark 2. If § < 1+ 2£2, then I, : A% — B® is bounded if and only if g = 0
by the maximal module principle. Similarly, if § < 142%2, then J, : A%, — BF
is compact if and only if g = 0.
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4. The boundedness and compactness of Jg ,, Iy, : Bf — AP

In this section, we consider the boundedness and compactness of J, ,, Iy, :
B? — AP. Some auxiliary lemmas should be given. The following lemma, is
well known (for example, see [11]).

Lemma 5. Let f € B?,0 < 8 < 0o. Then

FO)+ 1 Fllse SEEEE g1
'f(z)'f{ SO+ fllosn B B

Let 0 < p < o0, p be a positive Borel measure on D. Define

Dp(pw) ={f € H(D), |Iflp,) = /D |f'(2)Pdu(z) < oo}.

Lemma 6. Let p be a positive measure on D and 0 < p,3 < oco. Then the
following statements are equivalent:

(a) i : B% — D,(p) is bounded,

(b) i : B ~— D,(u) is compact;

(c) i: B — Dp(u) is bounded,

(d) ¢ BO — Dp(p) is compact;

(e)
du(z)
/D (1= [epyer <

Remark. The above lemma was obtained by Zhao when 0 < 8 < 1 (see [20]).
In fact his proof implies that the results also hold for f > 1. Partial results
can also be found in [4] when 8 = 1.

Theorem 5. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p,f < o0 and a > —1. Then the following statements are
equivalent:

(a) Iy, : B® — AP is bounded,

(b) I,,, : B® — AP is compact,

(c) I, Bg — AP is bounded,

(d) I ij ~+ AP is compact;

(e)

— +a
J AR e paae) < .
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Proof. Let f € AP, Since (see [6])

Hhﬂ%><LWWﬁMW%MW”Mw
= /mwwmwmwwwwaﬂﬁwwma
- /u ))[Pdu(z)
= [1r@pduoy,
D
where

du(2) = |¢'(2)Plg(e(2)P(1 — |2]*)7**dA(2),

by Lemma 6, we know that I, , : B?(Bj) — AP is bounded(or compact) if and
only if

dpop™! ¢’ (2)|P(1 = [2[*)pte PAA(s
w> [ e = [ —lap(@)PdAL).

From Theorem 5, we get the following corollary (see [17]).

Corollary 7. Let ¢ be an analytic self-map of the unit disk. Assume that
0<p,fB< oo and > —1. Then the following statements are equivalent:
(a) C, : BP — AP is bounded,
) Cp : B? = AP, is compact,

(b
(c) C, : BE — AP is bounded,
(d) C, : B — AP is compact;
(e)
We(l — |z?)Pte
/ 'z a '_ e | |)p)ﬁ dA(z) < co.

Theorem 6. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p < 00,8 > 1 and o > —1. Then the following statements
are equivalent.

(a) Jg,p : BP — AP is bounded;

(b) Jy,p : B — AP is compact;

()

o' (2)[P(1 = |2+
p (1—lp(2)P)#-br

lg'(0(2))[PdA(2) < o0



VOLTEREA COMPOSITION OPERATORS
Proof. (a) & (c). Since(see [6])
Woslly = [ Unof P = (2 *=d4(2)
= [ 0GP P - dal)
= [ P o)) rdu)
[ s ey e o,

where

= 19" (P(@)Ple' ()P (1 = [ (1 = [p(2)|*) dA(2),
by Theorem 3.2 of [12], we see that J,,, : B® = AP is bounded if and only if
' (P — |2 _ [ _duoy”?
b (1= [pp)-Dr 19 PE)I"dA) = /,_-, (TP =™
(b) = (a). It is clear.

(¢c) = (b). Assume (c) holds, we obtain that J;, is bounded. Taking
f(z) =1, we get

(29) /D ¢ (2)[Plg' (0(2))[P(1 = |2]*)P**dA(2) < 0.
In addition, we find that for any € > 0, there is an r € (0,1) such that

! P _ 2\p+a
B0 G P A <

Let {fx} be any bounded sequence of B? and converges to 0 uniformly on
compact subsets of D. For the above ¢, there exists a kg > 0 such that
Sup|, < [ fe(w)| < € as k > ko. Hence by (29) and (30), we have

“ngwfknig

/ P(1 = [22)P+edA

(/]Lp(z)|_<_r+_/|w(z)|>r)|( gmfk)( )| |2| (z)

(/ +/ )|fk(w(z))|p|<p'(z)|p|g'(cp(z))|p(1 —22)PredA(z)
le(z)|<r lo(z)|>r

X

Il

< 6”/ ' (2)IPg' (P ()P (1 = [2]*)P**dA(2)
le(z)|<r
p o' ()P = |2)Pr »
< O +ellfills

In other words, we obtain limy_,e0 ||Jg, x,,fk[]pp = 0. Therefore J,, : B? — AP
is compact by Lemma 4. O
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Theorem 7. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p < 00,0 < 8 < 1 anda > —1. Then the following statements
are equivalent.

(a) Jy,p : BP — AP is bounded,

(b) Jg,p : B = AP is compact,

(¢)
[ 196 PIe P - ) < oo
Proof. (a) & (c). Assume that J, , : B — AP is bounded. Since
Bl g fllfs A/ lg' (@() P f(p(2) Pl (2) [P (1 = [2[*)PTdA(2),

taking f =1, we get (c¢).

Conversely we assume that (c) holds. Let f € B®. Then by (31) and Lemma
5 we see that J, , : B® — AP is bounded.

(b) = (a). It is clear.

(c) = (b). Similarly to the proof of {c) = (b) of Theorem 6 we can get the
desired result. O

Finally, we consider the case of 5 = 1.

Theorem 8. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p < oo and a > —1. Then,
(a) If the operator Jg,, : B — AP is bounded, then

62wl (o) I o (I = ) < oo
(b) If
' 2 I} 142
(33) fg}glg (¢(2))|1n T—W"p (2)I(L = |2]*)'*% < o0,

then Jg , : B — AP, is bounded.

Proof. (a) Assume that Jy, : B — AE is bounded. Let f € B. Then J, . f €
AP . By Lemma 2 we have

B4 (ne N2 <

/g, fll a2 1 Jg.0ll5— azli £l
24 1 SC 24 1 °
(1 e (e D
For any w € D, let f,,(2) = In (== . Since
|w| — |2

<2,
—wz| ~ |1—wz| -

1= [P fo @) < @ = ]2°) i
we have || fu|ls <In2+ 2. Replacing f with f,,) in (34), we obtain

/ 2 / 14242
|9’ ((2))] In ww @1 = 25 < Clgpllpoazllfo)ls
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From which we get the desired result.
(b) Assume that (33) holds. For any f € B, by Lemma 5, we have

o fI
/ Ty £ ()P (L = 2P redA(2)

= [ @I P (1 = [P dAC)

X

¥4 2 ! P pPTro
< Ui / e o) W - )
< Clfi jlelglg’(w(z»l”(ln m)plw’(z)lp(l ~ ey [ aac)
< Clfl sup lg (el (1n Ty I (P e
< 0.
Therefore J, , : B — AP, is bounded. O

Theorem 9. Let ¢ be an analytic self-map of the unit disk and g € H(D).
Assume that 0 < p < o0 and a > —1. Then,
(a) If the operator Jy , : B — A% is compact, then

2 a+2
35 li ! In ————|¢'(2)|(1 - 5T =0
(35) ol 19" (0(2))] 1_W)(z)lglw( (1= 1z

(b) If Jg,, : B — AP is bounded and

@0l I e el L Y =0

then Jy,, : B — A% is compact.

Proof. (a) Suppose that the operator Jy , : B — AF is compact. Let z, be a
sequence in D such that |o(z,)] = 1 as n = co. Take

nle) = (1 1= |sa2<zn)|2)_1(1“ - ;<zn>z)2'

Then

2 -1
_ In2)? <In?2
1—|so(zn>|2> (n2)” <

o n_____2____ -1 o 2 ©(2n)
I( )_2(1 I—I(P(Zn)P) (1 1—Z(P(Zn)> 1—Z(p(zn).

50 < (1

and
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Thus
falls = 1fa(O)] + sup(1 — =) £ (2)]
z€D
2 1
< In2+2sup(l - |z?) 1‘Z§(Z"> <cC.
z€D lnw = |2|

For |z| = p < 1, we have

2
1-z¢(zn)

2 2
‘1 <1n%+0>
|fa(2)| = S

=0 (n—o00),
e e

n 2
l_l()o(zn)l

that is, f, — 0 uniformly on compact subsets of D as n —+ co. Similarly to the
proof of Theorem 8, we obtain

/ 2 ’ — |z
9"zl in T2 ezl (L = [zl

_IQO Zn

From which we obtain (35) by Lemma 4.
(b) Assume that Jy, : B — AP is bounded and (36) holds. Taking f =1,
we obtain that

@) [ 18@0PIE @1 - 122 dA) < o
From (36), for any € > 0, there exist a r, 0 < r < 1, such that

(38) l9'(#(2))]In

M52 < Oy fllaz-

2 , ia
WVP ()1 -z <¢,

when [p(2)] > r. Let {fi} be any bounded sequence of B and converges to 0

uniformly on compact subsets of D. For the above €, there exists a kg > 0 such
that sup|, <, |fe(w)| < e as k > ko. Hence by (37) and (38) we have

AT
HUADIP(1 — 1212)PTodA
(/Iap(z)|§r+/|¢(Z)‘>T)|(Jg,¢fk)( WP(1 — |2)*)PTdA(2)
= (/ +/ )|fk(@(Z))V’|g/((p(z))]p|¢/(z)|p(1 _ |Z|2)p+adA(z)
e(z)|<r  Jp(2)[>r

X

< sup file()P / 19 (2(2) P19 ()P (L = |2P)PdA(z)
le(z)|<r le(2)|<r
P ! NP In? 2 '(2)|P(1 = |z]|2)PTe P
N /|¢(Z)|>rly(<p( D Tl (P (L = o)A )
< Ce+elful’

as k > kg. From which we get the desired result by Lemma, 4. d
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